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PREFACE 

 

 Increasing demand for fish age data to support stock assessments of the Nation’s fisheries 

has necessitated investigation into alternative technologies to produce these data more 

efficiently. Among the advanced technologies the National Marine Fisheries Service (NOAA 

Fisheries) has explored in recent years, Fourier transform near infrared (FT-NIR) spectroscopy 

of otoliths represents a transformative, machine-based approach for rapidly estimating fish ages. 

This method is significantly faster and more reproducible than the traditional method of age 

estimation, which relies on a human reader’s visual interpretation of growth patterns in hard 

structures. In contrast, FT-NIR spectroscopy functions at the molecular level, measuring 

absorbance associated with vibrations of covalent bonds in the NIR wavenumber range. 

Predictive analytics or deep learning tools are then used to establish a predictive relationship 

between otolith NIR absorbance and fish age. 

 In 2019, NOAA Fisheries funded a 5-year Strategic Initiative (SI) in support of research 

and development toward system deployment of FT-NIR spectroscopy for fish age determination. 

To date, the Alaska Fisheries Science Center (AFSC) has hosted four FT-NIR spectroscopy 

workshops, inviting staff from the regional NOAA age determination laboratories and experts in 

the field from around the world to share their research. These proceedings summarize 

presentations made at the fourth SI research workshop entitled, “Rapid Estimation of Fish Age 

Using Fourier Transform Near Infrared Spectroscopy”, held at the AFSC in Seattle, WA,  

April 3-7, 2023. Presentations given at the workshop are included in this document as extended 

abstracts, and in many cases, full research papers. The studies presented herein reflect the 

tremendous progress made since the start of the SI towards application development and 
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implementation of FT-NIR spectroscopy for fish age determination and integration into the stock 

assessment process. Case studies on the application of FT-NIR spectroscopy for predicting fish 

age and other biological characteristics such as reproductive status and body condition are 

presented for a number of fish taxa and regions of the United States. In several studies, deep 

machine learning was used to predict age and advance the ability to quantify uncertainty not 

available to classical chemometric methods. Several extended abstracts highlight research 

towards developing a flexible simulation framework that can be applied to explore uncertainty in 

model-based age predictions for a range of scenarios and species. In another, the authors describe 

the envisioned full integration of FT-NIR spectroscopy into the production ageing process, 

providing a framework for system deployment in the laboratory. Finally, three case studies are 

presented that evaluate the sensitivity of stock assessment model outputs to the substitution of 

age data products generated from the FT-NIR spectroscopy approach. These are just a few of the 

works in this document, which represents the most comprehensive collection yet of the 

application of FT-NIR spectroscopy in fisheries science. 

  



v 
 

CONTENTS 

 

PREFACE ...................................................................................................................................... iii 

CONTENTS .................................................................................................................................... v 

1.  NOAA Fisheries Fourier Transform Near Infrared Spectroscopy Fish Ageing Strategic 
Initiative: Past, Present, and Future 
(T. Helser) ................................................................................................................................. 1 

2.  Preliminary Analysis of Fourier Transform Near Infrared (FT-NIR) Spectroscopy and 
Convolutional Neural Network (CNN) Models to Predict Ages of Yellowfin Sole 
(T. TenBrink, I. Benson, B. Hsieh, M. Matta, T. Helser) ..................................................................... 9 

3.  A Preliminary Analysis and Review of FT-NIR Spectroscopy and DNA CpG Site 
Methylation for Fish Age Prediction 
(L. Lam, T. Helser, K. Nichols, B. Mayne, I. Benson, B. Hsieh, O. Berry, S. Jarman, K. McNeel) ............ 27 

4.  Applying FT-NIRS Predictive Ageing to Different Genetic Stocks of White Grunt 
(Haemulon plumierii) Within the U.S. South Atlantic 
(J. Clark, A. Ostrowski, J. Potts, B. Barnett, S. Garner, W. Rogers) .................................................... 49 

5.  A Novel Approach for Determining the Reproductive Status of Walleye Pollock  
(Gadus chalcogrammus) Using Raman Spectroscopy 
(S. Neidetcher, M. Arrington, T. Helser, E. Goldstein, I. Benson) ....................................................... 61 

6.  Fourier Transform Near Infrared Spectroscopy Ageing of Finfish and Shark Species  
in the Northwest Atlantic 
(A. Rubin, M. Passerotti, E. Robillard) .......................................................................................... 83 

7.  Exploration of Fourier Transform Near Infrared Spectroscopy for the Shortbelly Rockfish 
(Sebastes jordani), an Ecologically Important Forage Fish, off the West Coast Region 
(J. Choi, M. Monk) .................................................................................................................... 93 

8.  Investigating the Use of FT-NIR Spectroscopy to Age Gag Grouper  
(Mycteroperca microlepis), a Protogynous Hermaphroditic Species 
(B. Barnett, I. Benson, T. Helser, S. Lowerre-Barbieri, H. Menendez) ................................................. 99 

9.  Exploring the Use of FT-NIR Spectroscopy for Ageing Sablefish (Anoplopoma fimbria) 
and Pacific Hake (Merluccius productus) off the U.S. West Coast 
(J. Wallace) ........................................................................................................................... 117 



vi 
 

10.  Developing Spectroscopy Approaches to Measure Life History Characteristics of Fish 
Throughout Ontogeny 
(E. Goldstein, C. Waters, H. Fulton-Bennett, M. Matta, T. Helser, J. Vollenweider, C. Hinds, K. McNeel,  
C. Kastelle, S. Neidetcher, D. Oxman, F. Mueter) ......................................................................... 127 

11.  Rapid Daily Age Estimation of Juvenile Walleye Pollock in the Gulf of Alaska using 
FT-NIR Spectroscopy 
(M. Matta, E. Goldstein, I. Benson, H. Fulton-Bennett, C. Waters, B. Hsieh, T. Helser) ........................ 141 

12.  Developing NIR Sampling Methodology for Modeling Species Discrimination in  
Live Catfish for Aquaculture 
(C. Vance, A. Poudel, L. Chen, P. Allen, A. Kouba) ...................................................................... 151 

13.  Fourier Transform Near Infrared (FT-NIR) Spectroscopy Discriminates Archived  
Otoliths of Newly Detected Cryptic Species, Etelis carbunculus and Etelis boweni 
(K. Dahl, J. O’Malley, B. Barnett, W. Kline, J. Widdrington) .......................................................... 161 

14.  Trials and Tribulations of Using FT-NIR Spectroscopy on Coastal Pelagic Species:  
Method Development for Scanning Pacific Sardine Otoliths 
(E. Saas, B. Schwartzkopf, E. Dorval, D. Porzio) .......................................................................... 185 

15.  Benefits and Challenges of Using FT-NIR Spectroscopy for Age Estimation at the 
Northeast Fisheries Science Center 
(E. Robillard, M. Passerotti, A. Rubin) ........................................................................................ 205 

16.  Deep Learning Coupled with Fourier Transform Near Infrared Spectroscopy of Otoliths 
Improves Age Prediction for Long-Lived Fish 
(I. Benson, B. Barnett, T. Helser) ............................................................................................... 215 

17.  Automatic Fish Age Prediction Using Deep Machine Learning – Combining Otolith 
Images, NIR Spectra, and Metadata Features 
(A. Zheng, Y. Li, A. Vardanyan, S. Arsov, J. Hwang, I. Benson, T. Helser, J. Short, K. Bayer, C. Kastelle,  
B. Barnett, A. Rezek, F. Wallace, R. Hill, W. Kline, L. Thorton, N. Evou, R. Allman, N. Willett) .......... 239 

18.  Calibration and Variation of FT-NIR Otolith Spectra Among NIR Spectrometers and 
Species 
(A. Ostrowski, B. Barnett, J. Clark, J. Potts, A. Rubin, M. Passerotti, M. Monk, J. Choi, B. Schwartzkopf,  
E. Saas, E. Dorval) .................................................................................................................. 257 

19.  A Simulation-Based Approach to Evaluate Best Practices for Estimating Fish Age Using 
FT-NIR Spectroscopy 
(M. Arrington, J. Healy, T. Helser, E. Goldstein, I. Benson, B. Hsieh, A. Punt) ................................... 269 

20.  Database Design and Considerations with FT-NIR Spectra Data Collection and 
Management 
(J. Short) ............................................................................................................................... 287 



vii 
 

21.  Envisioning the Future of Production Fish Ageing: End-to-end Integration of the FT-NIR 
Spectroscopy Age Estimation Enterprise at the Alaska Fisheries Science Center 
(T. Helser, I. Benson, M. Matta, E. Goldstein, B. Hsieh, M. Arrington, J. Short) ................................. 297 

22.  A Simulation Framework to Examine the Effect of Ageing Error on FT-NIR  
Model-Based Age Predictions 
(M. Arrington, T. Helser, I. Benson, M. Matta, E. Goldstein, A. Punt) ............................................... 325 

23.  Fourier Transform Near Infrared Spectroscopy Data and Application Within the  
Eastern Bering Sea Pollock Assessment Model 
(J. Ianelli) .............................................................................................................................. 353 

24.  Sensitivity of Pacific Cod Stock Assessment to Alternative Age Composition Data  
Derived from Fourier Transform Near Infrared Spectroscopy of Otoliths 
(T. Helser, M. Siskey, I. Benson, S. Barbeaux) ............................................................................. 363 

25.  Sensitivity of Gray Snapper (Lutjanus griseus) Stock Assessment Models to Age Inputs 
Estimated with Near Infrared Spectroscopy 
(S. Garner, B. Barnett, D. Chamberlin, F. Forrestal, T. Helser, I. Benson, W. Kline, W. Patterson) ......... 399 

26.  Quality Control and Assurance of Reference Age Data at the Alaska Fisheries  
Science Center 
(M. Matta, J. Brogan, J. Short, T. Helser)..................................................................................... 413 

27.  Quality Assurance and Quality Control of Fourier Transform Near Infrared  
Spectroscopy Data for Age Prediction 
(E. Goldstein, B. Hsieh, M. Arrington, T. Helser) .......................................................................... 427 

DISCUSSION TOPICS AND RECOMMENDATIONS ........................................................... 447 

ACKNOWLEDGMENTS .......................................................................................................... 461 

CITATIONS ............................................................................................................................... 463 

APPENDIX A. Supplemental Tables and Figures ..................................................................... 499 

APPENDIX B. Workshop Agenda ............................................................................................. 519 

APPENDIX C. Workshop Participants....................................................................................... 523 

 



  
 

 

  



1 
 

 

 

1. NOAA Fisheries Fourier Transform Near Infrared Spectroscopy Fish Ageing  

Strategic Initiative: Past, Present, and Future 

 

Thomas E. Helser 

 

Chair, NOAA Fisheries FT-NIR Spectroscopy SIDT 
Program Manager 

AFSC Age & Growth Program 
 

Alaska Fisheries Science Center 
NOAA, National Marine Fisheries Service 

7600 Sand Point Way NE 
Seattle, WA USA 



2 
 

  



3 
 

INTRODUCTION 

 

The National Oceanic and Atmospheric Administration (NOAA) National Marine 

Fisheries Service (Fisheries) has undertaken a nationally coordinated research-and-development 

(R&D) effort across seven biological laboratories to investigate the use of Fourier transform near 

infrared (FT-NIR) spectroscopy of otoliths for fish age estimation (Helser et al. 2019a). NOAA 

Fisheries funded a 5-year strategic initiative (SI) entitled “A revolutionary approach for 

improving age determination efficiency in fish using FT-NIR spectroscopy” that began with 

funding in Fiscal Year (FY) 2020 with the overarching goal of improving precision and 

efficiency within the NOAA Fisheries fish ageing enterprise. To achieve this objective, the FT-

NIR Strategic Initiative Development Team (SIDT), comprised of NOAA scientists from all 

seven biological laboratories, convened a planning workshop entitled, “Rapid Estimation of Fish 

Age Using Fourier Transform Near-Infrared Spectroscopy” at the Alaska Fisheries Science 

Center in Seattle, WA, April 11-12, 2019 (Helser et al. 2019a). This collaborative effort involved 

the participation of national and international scientists and industry experts in FT-NIR 

spectroscopy and resulted in a framework and “roadmap” toward operationalizing the FT-NIR 

spectroscopy ageing technology across NOAA Fisheries science centers. 

Among the advanced technologies NOAA Fisheries has been exploring in recent years 

(https://www.fisheries.noaa.gov/insight/advanced-technologies), FT-NIR spectroscopy 

represents a transformative, machine-based approach for rapidly estimating fish ages for over 

200,000 hard structures, such as otoliths, that annually support fish stock assessments and fishery 

management plans. Multiples of that number of ageing requests are made, and in many cases, 

otoliths are collected. Nevertheless, the capacity to fulfill this demand remains unmet. The 

https://www.fisheries.noaa.gov/insight/advanced-technologies
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central principle governing fish age determination based on the growth patterns visible in otoliths 

has changed little over the last century. While ageing fish using scales can be documented as far 

back as the early 1700s, Johannes Reibisch was the first to describe a protocol for ageing fish 

using otoliths in 1899 (Jackson 2007). Microscopic counting of the annual growth zones in 

otoliths was the foundation of the ageing method then and is still the basis of age estimation 

today. With the exception of advancements in microscopy and otolith preprocessing techniques, 

the standard practice today remains essentially unchanged. The entire process of generating ages 

can be expensive, time consuming, and labor intensive, especially for species with long lifespans 

or complex otolith processing methods. Age data have been referred to as one of the most 

expensive sources of data collected for stock assessments. 

FT-NIR spectroscopy ageing of fish is fundamentally different from traditional 

microscopic ageing based on visual ring counts. It functions at the molecular level, measuring 

absorbance associated with vibrations of covalent bonds (O-H, C=O, C-H, C-N, and N-H) in the 

NIR wavenumber range (4,000 to 12,500 cm−1). Predictive analytics or deep learning is 

employed, enabling the establishment of a mathematical relationship between otolith NIR 

absorbance and fish age. The overarching challenge of the SI was to transfer a mature, yet 

continuously evolving technology from other fields like medicine, agriculture, and 

pharmaceutical industries to unique conditions and problems presented in fishery science. It is 

my belief that the SIDT has risen to those challenges, both conceptually and technologically, 

although some challenges were completely unexpected. 

Over the past several years, our R&D indicates that machine-based ageing using FT-NIR 

spectroscopy of otoliths holds substantial promise of a transformative impact on the NOAA 

Fisheries fish ageing enterprise. The irrefutable proof lays in the science underpinning the use of 
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FT-NIR spectroscopy for age prediction as demonstrated by a number of published studies 

across fish taxa and regions in the United States. (Helser et al. 2019a, Helser et al. 2019b, Healy 

et al. 2021, Arrington et al. 2022, Passerotti et al. 2020a, Passerotti et al. 2022b, Benson et al. 

2023), with others in Australia (Wedding et al. 2014, Rigby et al. 2016, Wright et al. 2021), and 

more are yet to be published (including a number of studies described in these proceedings). 

Taken together, we are between the “Proof of Concept Development” and “Application 

Development” stages, a pathway describing the nine technical readiness levels (TRL) for 

technologies in machine learning systems described by Lavin et al. (2022). 

Time horizons of attaining operational readiness vary depending on domain, but the 

general thinking is that five years or more are required to advance innovative technologies to 

deployment with a TRL-9 (Lavin et al. 2022). An article in Forbes Magazine under Leadership 

Strategy (https://www.forbes.com/sites/chuckswoboda/2020/06/15/leading-innovation-is-messy-

so-get-over-it/?sh=2b9f47ae7434) says that “innovation is messy and success requires embracing 

the unexpected.” We certainly did not expect the global SARS-CoV-2 pandemic that began on 

March 11, 2020 (https://www.who.int/europe/emergencies/situations/covid-19); the very first 

year of SI Funding. Needless to say, the pandemic had a profound impact on our SI R&D. A 

“significant delay” was the consensus of the SIDT, which was communicated to the NOAA 

Fisheries Science Board and resulted in extending SI funding for an additional year (FY2025). 

Despite the 2+ year setback from the pandemic, substantial progress of the SI has been 

made. However, that progress has not been shared equally among the science centers. The 

reasons for varying progress among the ageing laboratories, in my estimation, stem from several 

reasons, although others may be in play. Ageing laboratories have different levels of staff and 

resources available to dedicate towards the FT-NIR spectroscopy SI, while at the same time 

https://www.forbes.com/sites/chuckswoboda/2020/06/15/leading-innovation-is-messy-so-get-over-it/?sh=2b9f47ae7434
https://www.forbes.com/sites/chuckswoboda/2020/06/15/leading-innovation-is-messy-so-get-over-it/?sh=2b9f47ae7434
https://www.who.int/europe/emergencies/situations/covid-19
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continue to provide production ages for annual stock assessments. The AFSC and Panama City 

ageing laboratories invested in FT-NIR spectroscopy instruments prior to the SI funding and 

were able to spearhead proof-of-concept development and initiate otolith scanning sooner than 

other laboratories. Moreover, during the SARS-CoV-2 pandemic, Bruker FT-NIR spectroscopy 

instruments could not be fielded and set up at other laboratories because infection mitigation 

procedures differed in various regions of the country, resulting in varying access to laboratory 

facilities. If the impression that one gets, from reading these proceedings, is that AFSC and 

Panama City have made greater advancements in SI R&D, it is not for lack of trying from SIDT 

members at other ageing laboratories. The central message to the reader from my perspective is 

that good progress toward operationalization has been made, although much work is yet to be 

done across all science centers. Within the pages of this research proceedings document, the 

reader will hopefully comprehend the depth and breadth of our R&D of FT-NIR spectroscopy 

and its application to fish ageing and beyond.  

Our April 2023 FT-NIR spectroscopy fish ageing workshop featured three main themes 

that formed the backbone of the “roadmap” towards operational readiness: (1) application 

development, (2) application implementation, and (3) stock assessment integration (Helser et al. 

2019a). Application development focused on the broad-scale applicability of the technology to 

achieve stated goals for age prediction from otolith spectra in real-world scenarios with robust, 

verifiable data. In application implementation, the goals were to investigate the delivery of new 

data generated by predictive models, define and evaluate model performance, establish protocols 

for data processing and quality control, and standardize operating procedures and best practices 

to guide decisions related to sample size, precision, and performance measures. The stock 

assessment integration theme sought to evaluate the sensitivity of population model output of 
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critical management outcomes and benchmarks from incorporating FT-NIR spectroscopy data 

products. Taken together, each element of the hierarchy builds upon the previous tier with 

“discovery switch-backs” helping to refine and improve the technical knowledge of the system. 

Within the pages of this document, “Proceedings of the Fourth Research Workshop on 

the Rapid Estimation of Fish Age Using Fourier Transform Near Infrared Spectroscopy”, we 

present the accumulated knowledge of the FT-NIR spectroscopy SIDT R&D efforts across the 

three themes. Presentations given at the workshop are presented in this document as extended 

abstracts, and in many cases, full research papers likely to appear in the scientific literature. Case 

studies within the application development theme are presented describing the successful 

application of FT-NIR spectroscopy for predicting fish age across a number of fish taxa and 

regions of the U.S. In several of those applications, deep machine learning, using convolutional 

neural networks (CNN), was employed to improve age prediction and advance the ability to 

quantify uncertainty not available to classical chemometric methods. Within the application 

implementation theme, several extended abstracts highlight research toward developing a 

flexible simulation framework that can be applied to explore uncertainty on model-based age 

predictions for a range of scenarios and species. In another abstract, the authors describe the end-

to-end integration of the FT-NIR spectroscopy production ageing process as it would be 

envisioned for system deployment in the laboratory. Finally, within the stock assessment 

integration theme, three case studies are presented which evaluate the sensitivity of stock 

assessment model (e.g., Stock Synthesis) outputs and critical management quantities and 

benchmarks to the substitution of age data products generated from the FT-NIR spectroscopy 

approach. 
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On behalf of the SIDT and other scientific contributors, I am proud to present the 

collected works and accomplishments made on the strategic initiative, particularly under 

challenging circumstances. The abstracts mentioned represent just a few of the works of our 

efforts to explore the application of FT-NIR spectroscopy in fisheries and ecological science, 

several of which I consider cutting edge. I believe the goals of the SI are achievable with good 

probability of success, but more work is needed to get us over the finish line. 
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ABSTRACT 

 

 We present a preliminary analysis of two alternative methods to the traditional 

microscopic approach to predict ages for yellowfin sole (Limanda aspera). Yellowfin sole is the 

most abundant flatfish (Family Pleuronectidae) along the eastern Bering Sea continental shelf 

and is the target of the largest flatfish fishery in the world. For this study, we used microscope-

based reference ages from fish collected from 2012 to 2017 (age range: 1 to 43 years; n = 4,808) 

to test the utility of alternative age determination methods, Fourier transform near infrared (FT-

NIR) spectroscopy using partial least squares regression (PLS) models and convolutional neural 

networks (CNN). The performance of the PLS models for predicting yellowfin sole ages resulted 

in r2 values of 0.90, with root mean square errors (RSME) of approximately 2.2 years. The CNN 

handled the non-linearity of the data slightly better than PLS models, with r2 values of 0.92 

(RMSE = 1.97 years) and 0.91 (RMSE = 2.03 years) for the training and test datasets, 

respectively. The CNN’s age predictions were comparable with the traditional microscope-based 

age estimates up to approximately 25 years and were most impacted by absorbance at specific 

wavelength ranges and by otolith weight. 
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INTRODUCTION 

 

 Effective fisheries management is the key to sustainability and long-term success of 

exploited fish populations (Melnychuk et al. 2021). Age composition data used in age-structured 

stock assessment models is a critical component of fish stock assessments. These ages are 

incorporated into assessments to inform key model parameters such as natural mortality, 

recruitment, and growth, and support the calculation of biological reference points, which are 

benchmarks used to evaluate the status of a stock. With an effort of broadening assessments of 

fish stocks to a more holistic approach that includes ecosystem management, climate effects are 

also being recognized for single-species assessments (e.g., Townsend et al. 2019). These effects 

may have negative consequences on the age and size structure of populations (Ohlberger et al. 

2022). Impacts to stocks from both fisheries and climate change have resulted in an increased 

demand in both the quality and quantity of age composition data. This demand has led to an 

effort to pursue complementary or alternative methods to the traditional microscope approach of 

age estimation. Traditional ageing involves the use of collecting otoliths (ear stones), calcium 

carbonate structures located behind the brain in bony fishes, and enumerating annual bands or 

growth zones to estimate an age, often after some process of otolith preparation. In some species, 

it can be difficult to interpret these growth zones, and preparation methods do not always provide 

clarity of the age reading surface. The traditional approach is time consuming, potentially 

expensive, and requires experienced age readers.  

Methods for automating the ageing process from otolith samples have been investigated. 

The use of machine-based technologies to streamline, increase the efficiency, and improve 

repeatability of age determination in fisheries science has recently been attempted. The approach 
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of using Fourier transform near infrared (FT-NIR) spectroscopy has been employed as a method 

to generate ages from otoliths of marine fish (e.g., Robins et al. 2015, Helser et al. 2019b, 

Passerotti et al. 2020b). FT-NIR spectroscopy is used in a wide variety of industries including 

pharmaceutical, chemical, petrochemical, and agricultural manufacturing. It has applications 

ranging from raw material identification to quality control monitoring and determination of 

product composition. FT-NIR spectroscopy itself is a vibrational spectroscopy technique based 

on the interaction of electromagnetic energy of a specific frequency range with the covalent 

bonds in the near infrared region. The bonds associated with different chemical functional groups 

(C–H, N–H, and O–H) absorb energy at unique and characteristic frequencies, and the relative 

amount of each functional group present is proportional to the amount of energy absorbed. 

Quantitative analysis of FT-NIR spectra is often performed using partial least squares regression 

(PLS) models, a classic linear method applied to spectral data and that one that works well on 

this type of data as it reduces the high dimensionality of an x-matrix of spectra down to its 

principal components (Norgaard et al. 2000). In addition to FT-NIR spectroscopy, the use of 

machine learning algorithms in the form of artificial neural networks has also garnered attention 

in fisheries science (e.g., Chen and Wang, 1999; Dempsey et al. 2020). Artificial neural networks 

are computational structures mimicking cerebral neural networks consisting of layers or 

computational units (Cook 2020). Algorithms of convolutional neural networks (CNN) were 

found to be useful for FT-NIR spectral data (Cui and Fearn 2018). Furthermore, recent studies 

have shown that CNN have been successful in the age prediction of fish using otolith images 

(Ordoñez et al. 2020). Benson et al. (2023) developed a multimodal convolutional neural 

network (MMCNN) capable of predicting fish ages using FT-NIR spectra and corresponding 

biological and geospatial data. Here, we present a study on the utility of FT-NIR spectroscopy 
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coupled with CNN models to predict ages from otoliths of yellowfin sole (Limanda aspera) with 

a comparison to reference ages from traditional methods. 

 

METHODS 

 

Species Description 

 

 Yellowfin sole is a medium-sized and moderately long-lived flatfish (Family 

Pleuronectidae) inhabiting eastern North Pacific waters from British Columbia, Canada, to the 

Chukchi Sea. In Alaska, it is the most abundant flatfish along the eastern Bering Sea continental 

shelf and is the target of the largest flatfish fishery in the world with annual catches exceeding 

125,000 metric tons (Spies et al. 2022). Yellowfin sole is managed as a single stock in the Bering 

Sea-Aleutian Islands (BSAI) management area (Spies et al. 2022). Yellowfin sole is assessed 

annually through age-structured modeling. Each year, approximately 1,300 otoliths from 

yellowfin sole are aged by the Age and Growth Program of the Alaska Fisheries Science Center. 

This species has an age range from 1 to 43 years from a historic collection of approximately 

54,000 ages (https://apps-afsc.fisheries.noaa.gov/refm/age/stats/max_age.htm). Ages are 

incorporated into the assessment of the yellowfin stock to support calculations of management 

reference points, such as acceptable biological catch (ABC) and overfishing level (OFL).  

 

 

 

 

https://apps-afsc.fisheries.noaa.gov/refm/age/stats/max_age.htm
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Reference Data and Spectral Acquisition  

 

 Otoliths from yellowfin sole specimens were collected by the Alaska Fisheries Science 

Center during the summer on bottom trawl research surveys of the eastern Bering Sea from 2012 

to 2017 (Lauth et al. 2019). Reference ages from these specimens (n = 4,808) were determined 

by traditional methods following protocols in Matta and Kimura (2012). Otoliths were scanned 

and spectra acquired using a Bruker Tango-R spectrometer. Scanning of each otolith occurred 

after blotting dry glycerol-thymol preservative and recording otolith weights (nearest 0.001 g). 

Orientation and placement of each otolith was consistent for every sample following initial 

testing of different presentation methods. The effects of otolith side (blind and eyed) and 

accessories (apertures and stamps) applied to the Tango-R spectrometer scan (aperture) window 

were evaluated. It was determined that either otolith side placed within a chrome ring and 

covered with a flat bottom chrome stamp provided the best prediction results (Fig. 2.1). Spectra 

were collected on the Tango-R spectrometer primarily between 11,500 and 4,000 cm-1. Samples 

were analyzed at a resolution of 16 cm-1 with 64 replicate scans. 

 

Data Splitting and Preprocessing 

 

 Preprocessing of raw spectral data was a fundamental process subsequent to classification 

model building and involved several pretreatment methods to remove significant noise and other 

factors. Preprocessing was conducted using the chemometric software OPUS™ (version 7.8, 

Bruker Optics). Spectral data were preprocessed with a first derivative Savitsky-Golay transform 

(17 point smooth). To evaluate the extent of spectral variability across collection years and detect 
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outliers, we used principal component analysis (PCA) and Hotelling’s T2 (Rodionova and 

Pomerantsev 2020). Data splitting was conducted using the Kennard-Stone (KS) algorithm 

(Kennard and Stone 1969). This procedure maximized the Euclidean distance based on the 

importance of the principal components, measuring the most representative samples. The 

training and test datasets were split 80% to 20%, respectively. The training set was used to train 

the model, and included the full range of reference ages and spectral variation. The test set 

consisted of unobserved samples not included in the training set. 

 

Modeling Approaches 

 

 For this study, we used two modeling approaches to predict ages of yellowfin sole. 

Spectral data and reference ages were fit using PLS models. Additionally, CNN was considered, 

as it has the potential to handle nonlinearity in data better than the traditional chemometrics 

approach (i.e., PLS; Benson et al. 2023). For the PLS models, Solo 8.7 software (Eigenvector 

Research, Inc., Manson, WA, USA) was used to select wavenumbers and generate the regression 

models. Wavenumber selection was completed using the interval PLS regression algorithm 

(Norgaard et al. 2000) with interval size 10 and automatic selection of the interval number. To 

implement the CNN algorithms, we employed Python 3.7.0 using TensorFlow v. 2.5.0 with 

implementation of the Keras API (i.e., application programming interface; Chollet 2015). To 

build the CNN model, input features of biological data (fish length) and geospatial data (gear 

depth, gear bottom temperature, latitude) during the study period (2012-2017) were introduced 

along with the spectral data. To interpret the predictions, the Python SHAP (SHapley Additive 

exPlanations) library was used to understand the importance of the variables in the trained model 
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for predictions (Lundberg and Lee 2017). Model predictive performances were compared using 

the coefficient of determination (r²) and root mean square error (RMSE; Helser et al. 2019b). 

To compare the accuracy between traditional microscope-based ages and those ages 

predicted by our modeling approaches, we reported the frequency of relative bias over all ages 

and mean bias by age class. Traditional bias was calculated as a difference between two trained 

age readers’ microscope-based age estimates for the same specimen. Relative bias (B) was 

calculated as a difference between age predicted by the models (rounded to the nearest integer; 

BMODEL = AgeMODEL – AgeTraditional) and traditional microscope-based age estimation (BTraditional = 

AgeReader1 – AgeReader 2; Helser et al. 2019b). 

 

RESULTS AND DISCUSSION 

 

 For the PLS models, r2 values for both the training and test datasets were 0.90 (Table 

2.1). The RMSE for the training and test datasets suggest the PLS models predicted ages within 

2.2 years, based on an age range up to 43 years (Table 2.1). The non-linearity of the data, which 

might be the result of the measured spectral data associated with the otoliths, indicated that CNN 

might be a more robust method to deal with this relationship (Fig. 2.2). The CNN performed 

slightly better than PLS (Table 2.1; Fig. 2.3). CNN appears to be the better method for predicting 

yellowfin sole ages than PLS. The optimal CNN model resulted in a coefficient of variation (r2) 

of 0.92 and 0.91 for the training and test datasets, respectively. The RMSEs associated with these 

datasets were approximately 2.0 years. Variable importance from the CNN model suggested that 

absorbance associated with 6,000 to 4,000 cm−1 wavenumbers had the highest influence on 

model predictions followed by otolith weight (Fig. 2.4). Otolith weight was highly correlated 



19 
 

with fish age, resulting in greater influence on the model than fish length. Given the results of 

CNN, the comparison between the traditional age estimates suggested that CNN had similar 

precision up to ages of 25 years (Fig. 2.5). 

FT-NIR spectroscopy of otoliths coupled with machine learning techniques such as CNN 

can predict fish age with comparable precision to traditional age-based methods. Precision in this 

case was comparable ±1 years up to approximately 25 years, which represented >90% of the 

ages associated with the reference age dataset. Further use of CNN should be explored. Benson 

et al. (2023) demonstrated that integrating the entire range of wavenumbers of FT-NIR spectra 

and corresponding biological and geospatial data for use with CNN can predict ages of walleye 

pollock (Gadus chalcogrammus) comparable to classical PLS and yield good or slightly better 

precision than traditional microscope-based ages. 

Yellowfin sole is currently considered a healthy stock and not in danger of being 

overfished; however, current environmental conditions in the eastern Bering Sea (e.g., elevated 

bottom temperatures observed cyclically) might impact fish growth and condition potentially 

altering the size and age structure of the population (Spies et al. 2022). In the stock assessment of 

yellowfin sole, the growth of males and females are modeled separately and inform assessment 

model parameters, such as natural mortality and recruitment. Furthermore, the use of annual 

observed population mean weight-at-age from the trawl survey allows for time-varying growth in 

the age-structured assessment model, given the observed correlation between bottom temperature 

and growth. Future analysis will need to account for these variables observed for yellowfin sole. 

If CNN are to be explored further, models separated by sex would be recommended. 
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Table 2.1. -- Modeling prediction results for yellowfin sole (Limanda aspera) age using the 
coefficient of determination (r²) and root mean square error (RMSE) from partial 
least squares regression (PLS) and convolutional neural networks (CNN). Training 
and test numbers are based on a data-split of 80-20%. 

 

Model Dataset Age range N r2 RMSE 

PLS Training 1 - 43 3,851 0.901 2.251 

 Test 2 - 34 957 0.903 2.156 
      
CNN Training 1 - 43 3,851 0.924 1.971 

 Test 2 - 34  957 0.914 2.027 
  



21 
 

 

 

Figure 2.1. -- Yellowfin sole (Limanda aspera) otolith sample presentation on the scanning 
window of the Tango-R (Bruker) spectrometer. A chrome ring is inserted inside 
the cover mount with the otolith placed inside the chrome ring directly on the 
window. A chrome stamp is then placed over the sample prior to instrument 
scanning and spectral acquisition. 
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Figure 2.2. -- Model results from partial least squares regression (PLS) of the training and test 
datasets for predicting ages of yellowfin sole (Limanda aspera). 
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Figure 2.3. -- Model results from convolutional neural networks (CNN) of the training and test 
datasets for predicting ages of yellowfin sole (Limanda aspera). 
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Figure 2.4. -- The relative importance of convolutional neural network (CNN) input features for 
predicting ages of yellowfin sole (Limanda aspera). Wavenumbers are aggregated 
by 1,000 cm−1. The y-axis indicates the feature name in order of importance from 
top to bottom. The x-axis indicates the average of the absolute Shapley value of 
each feature. 
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Figure 2.5. -- Frequency of mean bias by age class between the convolutional neural network 
(CNN) based on FT-NIR spectral data and the traditional microscope-based ages 
for yellowfin sole (Limanda aspera). The error bars show one standard error 
interval around the mean. The solid line represents a 100% agreement line, while 
the dashed line represents ±1 year. 

  



26 
 

  



27 
 

 

 

3. A Preliminary Analysis and Review of FT-NIR Spectroscopy and DNA CpG Site 

Methylation for Fish Age Prediction 

 

Laurel S. Lam1,2, Thomas E. Helser3, Krista M. Nichols2, Benjamin T. Mayne4,  

Irina M. Benson3, Brenna C. Hsieh3, Oliver F. Berry4, Simon N. Jarman5,  

and Kevin W. McNeel6 

 

1 Pacific States Marine Fisheries Commission 
205 SE Spokane Street, Suite 100 

Portland, OR USA 
 

2 Northwest Fisheries Science Center 
NOAA, National Marine Fisheries Service 

2725 Montlake Boulevard E 
Seattle, WA USA 

 
3 Alaska Fisheries Science Center 

NOAA, National Marine Fisheries Service 
7600 Sand Point Way NE 

Seattle, WA USA 
 

4 The Commonwealth Scientific and Industrial Research Organisation (CSIRO) 
54 Fairway 

Crawley, Western Australia AUSTRALIA 
 

5 School of Biological Sciences 
The University of Western Australia 

54 Fairway 
Crawley, Western Australia, AUSTRALIA 

 
6 Age Determination Unit 

Alaska Department of Fish and Game 
1255 W 8th Street 
Juneau, AK USA 

  



28 
 

  



29 
 

ABSTRACT 

 

 Production ageing of groundfishes for stock assessments relies on validated methods that 

have high accuracy and precision, and are scalable to large sample sizes. Traditional methods are 

the most reliable but increasingly inefficient in the face of growing stock assessment demands. 

Lingcod (Ophiodon elongatus) have traditionally been aged using fin rays, a process that is both 

time intensive and costly in terms of materials, space, and personnel, yet has the highest 

accuracy, readability, and minimal between-reader bias compared to other age structures. 

However, emerging technologies that are cheaper, faster, and comparable in accuracy and 

precision are showing promise. Here, we assessed the performance of two alternative, model-

based methods of predicting lingcod age, DNA methylation and Fourier transform near infrared 

(FT-NIR) spectroscopy. Average coefficient of variation (ACV), percent agreement, and bias 

from the two alternative methods were compared to traditional methods of counting annuli using 

fin rays and otoliths (break and burn). Results demonstrated that ages estimated by DNA 

methylation and FT-NIR spectroscopy have slightly higher ACV but are in close agreement 

(greater than 95% agreement within 2 years) with fin ray and otolith-determined ages. Between 

the two alternative methods, the FT-NIR spectroscopy model performed slightly better than the 

DNA methylation model. Considering the potential for scalability, increased efficiency, and 

reduced cost, these methods have significant potential to be used in production ageing for 

lingcod stock assessments. 
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INTRODUCTION 

 

 Lingcod (Ophiodon elongatus) are a demersal top predator found along the U.S. West 

Coast, and play an important role ecologically in nearshore and shelf-slope habitats, and 

economically in commercial and recreational fisheries. The coastwide lingcod stock is federally 

managed as part of the Pacific Coast Groundfish Fishery Management Plan (FMP), where stock 

assessors use age-structured models to estimate population abundance, stock productivity, and 

future harvest goals. Fishery-independent and -dependent lingcod age data throughout their range 

are vital in age-structured stock assessments models and are provided by federal and state 

agencies dedicated to the production ageing of groundfish for management purposes.  

Lingcod are traditionally aged using hardened and cross-sectioned fin rays from the 

second dorsal fin (Beamish and Chilton 1977), a method that has been validated using known-

age fish and consistently has the highest accuracy, readability, and minimal between-reader bias 

compared to the use of other hard structures (e.g. otoliths, scales, vertebrae) (McFarlane and 

King 2001, Claiborne et al. 2014). In spite of this, the fin ray method is also the most time 

intensive and costly in terms of materials, space, and personnel due to the extensive preparation 

process needed before the fin ray can be aged under a microscope. This preparation process 

includes drying the fin, hardening the fin using cyanoacrylate glue, sectioning the fin into equal 

lengths, and mounting the sections onto slides (Beamish and Chilton 1977). During production 

ageing for an assessment year, upwards of 1,000 lingcod fin rays are required and can take a 

dedicated age team between 3-6 months, depending on the number of personnel and lab space 

available (N. Atkins, PSMFC, pers. comm.). In comparison, ageing the same number of otoliths 

(break and burn) takes 1-1.5 months, though with varying accuracy and precision depending on 
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geographic location (K. McNeel, ADFG, unpublished report). In recent years, alternative, model-

based methods of ageing fish using DNA methylation and Fourier transform near infrared 

spectroscopy (FT-NIR) spectroscopy have been explored across a variety of fish taxa with 

promising results. DNA methylation and FT-NIR spectroscopy have broad applications in 

medicine, pharmaceuticals, agriculture, and food production; however, their applications to the 

field of fisheries and resource management is relatively new with respect to production ageing 

for stock assessment purposes. Here, we examined the performance of these two model-based 

ageing methods on a commercially harvested, temperate marine fish from the North Pacific 

Ocean. 

DNA methylation is a key epigenetic mechanism associated with aging and refers to the 

addition of a methyl group to cytosine residues within cytosine-phosphate-guanine (CpG) sites. 

Generally, there is an age-dependent hypermethylation of specific CpG sites, also known as 

“clock sites”. Because DNA methylation changes are clock type (i.e., they follow a certain rate 

and affect certain loci), methylation of specific loci can be isolated to create a model, or genetic 

clock, that can be used to age certain species (Bird 1993, Jung and Pfeifer 2015). DNA 

methylation can be readily measured using DNA sequencing, making it an attractive option to be 

used for wild populations where large sample sizes are often needed (Heather and Chain 2016). 

Methods in obtaining DNA samples (via skin, tissue, or blood) can also be non-lethal, aiding in 

conservation efforts for protected species (Mayne et al. 2021). Moreover, biomarkers for age 

have been shown to be transferable across distantly related taxa (e.g., mammals, reptiles, birds, 

and fish), thereby increasing efficiency for identifying, isolating, and sequencing optimal CpG 

sites and eliminating the need to sequence entire genomes (De Paoli-Iseppi et al. 2017, Mayne  

et al. 2020, Lu et al. 2023). 
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Near infrared spectroscopy, widely used in agriculture, pharmaceutical and petrochemical 

industries, and most recently in terrestrial ecology (Vance et al. 2014) and fishery science 

(Helser et al. 2019b), functions by exciting covalent bonds (O-H, C=O, C-H, C-N, and N-H) at 

the molecular level using NIR light and measuring absorbance in the wavenumber range 4,000 to 

12,500 cm−1. The light interaction with the sample results in measurable vibrational frequencies 

represented by spectral signatures associated with molecular combinations and overtones that 

make up compounds in the sample (Conzen 2014, Siesler et al. 2002). Otoliths are composed of 

alternating layers of calcium carbonate and otolin, an organic protein structure that comprises 4-

5% of an otolith and accumulates as fish age (Campana 1999). In otoliths, these spectral 

signatures derived from their molecular composition are a proxy for fish age. The use of FT-NIR 

spectroscopy of otoliths to estimate fish age has been reported for a number of species (Wedding 

et al. 2014, Helser et al. 2019b, Passerotti et al. 2020b). This approach is based on generating a 

predictive model between the spectra of the ageing structure and fish age, which, once calibrated 

and validated, is able to produce age estimates at many times the rate compared to traditional 

methods (Helser et al. 2019b).  

The objective of this study was to 1) develop an epigenetic clock for lingcod using 

known age-associated CpG sites in zebrafish (Danio rerio), 2) develop a predictive model 

between otolith spectra from FT-NIR spectroscopy and reference ages to age lingcod, and 3) 

compare the performance of these two alternative methods of predicting lingcod age (DNA 

methylation and FT-NIR spectroscopy) with two traditional methods (fin rays and otoliths) using 

metrics commonly used in age structure comparisons studies: percent agreement, average percent 

error, and average coefficient of variation. Our goal was to investigate the application of FT-NIR 
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spectroscopy and DNA methylation as alternative methods of production ageing lingcod for 

stock assessment purposes.  

 

METHODS 

 

Sampling Methods 

 

 Lingcod fin rays and otoliths from California were collected between 2015 and 2017 for a 

total of 735 paired samples. Otoliths were initially scanned by the Alaska Fisheries Science 

Center (AFSC) using FT-NIR spectroscopy, then sent to be aged microscopically by the Alaska 

Department of Fish and Game (ADFG) Age Determination Unit (ADU) in Juneau, Alaska. 

Lingcod gill tissue was collected for DNA extraction (n = 206) from fish caught off southeast 

Alaska to the U.S.-Mexico border (excluding Canadian waters). Of the 206 individuals with 

genetic material, 70 also had otoliths, collected making for a maximum of 70 paired samples. 

Two hundred and two individuals out of the 206 fish in the genetic subset had paired fin rays 

collected. 

 

Traditional Method: Fin Ray 

 

 Prior to age estimation, fin rays were dried, hardened using cyanoacrylate glue, cut into 2 

mm sections using a high-speed saw, and mounted onto microscope slides (Beamish and Chilton 

1977), a process that can take up to seven days for a batch of 100 fin rays. Ages were determined 

by counting the number of annuli under a compound microscope (40× magnification) using 
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transmitted light. Early annuli can be difficult to discern or become resorbed, but can be verified 

using known mean radii measurements for the first, second, and third annuli (Cass and Beamish 

1983, McFarlane and King 2001, Laidig et al. 2001). These methods of fin ray preparation and 

age estimation follow Beamish and Chilton (1977) and the Committee of Age Reading Experts 

manual (CARE 2006), and are currently used by the Washington Department of Fish and 

Wildlife, Oregon Department of Fish and Wildlife, and Northwest Fisheries Science Center. 

 

Traditional Method: Otolith (Break and Burn) 

 

 The ADFG ADU has used sagittal otoliths to estimate lingcod age since 1995. Using the 

standard break and burn protocol (Williams and Bedford 1974), otoliths were broken through the 

core to produce two halves. The anterior half of the left otolith is preferred, and the final age 

estimate is determined from the ventral side of the cross-section. Annual growth bands are 

counted using reflected light on a stereoscopic microscope with standard 0.63-6.0X 

magnification with a lower powered eyepiece (16X). Location of the first annulus is verified 

using a size criterion derived from measurements of otoliths from young-of-the-year and one-

year-old lingcod (unpublished ADFG manuscript obtained from K. McNeel, Age Determination 

Unit, Juneau, Alaska).  

 

Alternative Method: DNA Methylation 

 

 Using lingcod DNA sequenced from gill tissue and known age-associated CpG sites from 

zebrafish (Danio rerio), we used a genome pairwise alignment method to identify conserved age-
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associated CpG sites in the lingcod genome. These sites were targeted for primer design in the 

multiplex polymerase chain reaction (PCR) assay (Mayne et al. 2020). Multiplex PCR was 

designed for primers to target and isolate conserved age-associated CpG sites using PrimerSuite 

(Lu et al. 2017) and to measure DNA methylation at these sites. CpG sites were sequenced using 

designed primers and a model was fitted to predict age from DNA methylation. To generate the 

model to predict age from DNA methylation, samples were randomly assigned to either a 

training or testing data set with a 70/30 split, respectively. Age in years was log transformed 

prior to fitting the data with an elastic net linear regression model (Friedman et al. 2010). The 

glmnet function in the glmnet R package was used to apply the elastic net regression model and 

was set to a 10-fold cross validation and the α-parameter was set to 0.5, similar to other studies 

(Horvath 2013, Mayne et al. 2020). The testing data set was used as a validation of the model 

and to test for accuracy. The performance of the model was measured using Pearson correlations 

and mean absolute errors (MAE). A similar Pearson correlation and MAE between training and 

testing datasets indicates similar performance, a lack of overfitting, and high reproducibility 

(Mayne et al. 2020). We also determined the performance of the model within age ranges to 

determine if the model was biased to specific age classes. 

 

Alternative Method: FT-NIR Spectroscopy 

 

 For spectroscopic analysis, unaltered whole otoliths were removed from their vials and 

gently cleaned with Kimwipes to remove contaminants before placement on the 22 mm sample 

window of a Bruker MPA II FT-NIR spectrometer. Otoliths were covered with a gold stamp and 

analyzed using diffuse reflectance on an integrated sphere and spectra collected at 16 cm−1 
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resolution at 8 wavenumber intervals with 64 co-scans, scanner velocity of 7.5 kHz and 

measuring absorbance values from 12,500 to 4,000 cm−1. Spectral data were pre-processed using 

1st derivative and a Savitsky-Golay (2nd order polynomial, 17 points) smoothing filter. Spectral 

variability across collection years and detection of outliers was evaluated using principal 

component analysis (PCA) and measures such as Hotelling’s T2 and Q-statistic. Helser et al. 

(2019b) reported that scan time to acquire otolith spectra ranges between 40-60 seconds. Spectral 

regions that exhibited the highest correlation with changes in the reference values (age) were 

isolated using PCA. We used the chemometric software Solo 8.7 (Eigenvector Research, Inc., 

Manson, WA, USA) for exploratory analysis using PCA, the subsequent data split into training 

and test data sets for data processing and model generation, and to select the optimal model and 

used partial least squares (PLS) regression (Chen and Wang 2001) to develop a quantitative NIR 

model from the reference values (fin ray ages and otolith ages, respectively) to predict age. To 

cross validate the model, each calibration sample is temporarily removed from the dataset, then a 

PLS model is created from the remaining samples and the sample that was temporarily removed 

is predicted as an unknown. The difference between the reference value and the predicted value 

is determined, then the sample is returned to the dataset. This is repeated for each sample. Model 

performance and robustness was determined using the coefficient of determination (r2), which 

assesses predictive accuracy of the model, and the root mean square error of cross validation 

(RMSECV), an indicator of model accuracy (Helser et al. 2019b). 
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Ageing Error 

 

 Ageing error was quantified and compared between traditional and alternative methods 

(fin rays vs. DNA methylation, fin rays vs. FT-NIR spectroscopy, otoliths vs. DNA methylation, 

otoliths vs. FT-NIR spectroscopy). Ageing bias was examined graphically using age bias plots 

and statistically using symmetry tests to identify systematic biases, such as over- or under-

ageing, and where these biases may be occurring (e.g., in older ages or younger ages) (Campana 

et al. 1995). Precision, or repeatability, was quantified using percent agreement, average percent 

error (APE), and average coefficient of variation (ACV) (Campana 2001). APE and ACV are 

functionally interchangeable when there are only two age readers, but ACV is preferred when 

there are more than two readers as ACV is based on the standard deviation divided by the 

number of times the fish was aged. It is considered more accurate than APE as variance is a 

better estimator of precision than the absolute difference between reads and tends to be more 

unbiased and consistent (Chang 1982). While the median ageing error across studies is an ACV 

of 7.6 (or a 5.5 APE), there is no acceptable standard value of precision as readability is 

influenced by the species and the structure being aged (Campana 2001). 

 

RESULTS 

Epigenetic Clock Model Performance 

 

 We found 11 CpG sites out of the initial 29 zebrafish CpG sites were needed as the 

minimum number of predictors with the highest performance for use in the lingcod epigenetic 

model. Two separate models were created based on the reference dataset used to calibrate the 
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model, one using fin ray ages as reference (n = 202) and one using otolith ages as the reference 

(n = 68). A high correlation was found in the training data set between the fin ray reference ages 

and predicted ages (Fig. 3.1A, Pearson correlation = 0.93, p < 2.20 × 10-16). The high correlation 

was also maintained in the testing data set (Fig. 3.1B, Pearson correlation = 0.92, p < 2.20 ×  

10-16). This suggests a lack of overfitting as the training and testing data set had similar 

performance. This was further demonstrated with no statistical difference found between the 

absolute error rates between the training (median = 1.06 years) and the testing (median =  

1.14 years) data sets (Fig. 3.1, p = 0.868, t-test, two-tailed). No difference in absolute error rates 

was found between sexes in both the training (p = 0.1806, t-test, two-tailed) and testing data sets 

(p = 0.544, t-test, two-tailed). The otolith-referenced epigenetic clock similarly had high 

correlation in the training data (Fig. 3.2A, Pearson correlation = 0.79, p < 2.10 × 10-11) and the 

testing data set (Fig. 3.2B, Pearson correlation = 0.83, p < 1.30 × 10-5). There was no statistical 

difference found between the absolute error rates between the training (median = 1.34 years) and 

the testing (median = 1.14 years) data sets (Fig. 3.2, p = 0.455, t-test, two-tailed). 

 

FT-NIR Spectroscopy Model Performance 

 

 Optimal models from PLS regression ranged from 7 to 9 latent variables with the most 

informative region for age prediction being within the 7,000 to 4,000 cm-1 wavenumber region. 

Similar to the epigenetic models above, two models were generated based on the reference data 

set used. The FT-NIR spectroscopy age prediction model using the fin ray ages as reference (n = 

735) yielded high performance, with 93% of the variability in estimated ages explained by the 

model where 68% of estimated ages should fall within 0.82 years of expected age (r2 = 0.93, 
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RMSECV = 0.82 years). The model using otolith ages as reference (n = 70) was comparable in 

predictive accuracy, with 90% of the variability in estimated ages explained by the model and 

68% of estimated ages falling within 1.2 years of expected age (r2 = 0.90, RMSECV = 1.2 

years). 

 

Comparison of Relative Accuracy/Precision Between Traditional and Alternative Methods 

 

 Bias plots, percent agreement, and ACV were determined for each ageing method pair: 

fin rays and epigenetics (fin ray reference); fin rays and FT-NIR spectroscopy (fin ray reference); 

otoliths and epigenetics (otolith reference); and otoliths and FT-NIR spectroscopy (otolith 

reference). Between the epigenetic method and FT-NIR spectroscopy (using fin ray reference), 

the FT-NIR spectroscopy predictive model had higher percent agreement (50% agreement, 

92.4% agreement within one year, 95% agreement within 2 years) and slightly lower error 

compared to the epigenetic predictive model (37.1% agreement, 85.6% agreement within one 

year, 98.8% agreement within 2 years) (Table 3.1). The fin ray referenced FT-NIR spectroscopy 

model showed less bias and no evidence of systematic under- or over-ageing (Fig. 3.3) compared 

to the epigenetic model.  

Between the epigenetic method and FT-NIR spectroscopy using the otolith reference, the 

FT-NIR spectroscopy predictive model similarly had higher percent agreement (35.7% 

agreement, 80.0% agreement within one year, 95.7% agreement within two years) and lower 

error compared to the epigenetic predictive model (20.6% agreement, 58.8% agreement within 

one year, 86.85 agreement within two years) (Table 3.1). Both the epigenetic and FT-NIR 

spectroscopy models appeared to be slightly biased towards over-ageing rather than under-
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ageing; however the FT-NIR spectroscopy model outperformed the epigenetics model overall 

(Fig. 3.3). 

 

DISCUSSION AND CONCLUSIONS 

 

 Understanding the applications, benefits, and limitations of alternative, model-based 

methods in the production ageing of groundfish is important for the future of stock assessments 

and fisheries management agencies. While thousands of ageing structures across multiple 

groundfish species are collected in fisheries-independent and -dependent surveys, only a fraction 

are regularly aged due to resource constraints, such as time and personnel. In this study, we 

demonstrated that DNA methylation and FT-NIR spectroscopy appear to be promising 

alternative methods of ageing lingcod with accuracy and precision comparable to traditionally 

used methods and thus have the potential to greatly increase ageing throughput and efficiency 

during time sensitive assessment years. 

There are many benefits to using DNA methylation for ageing, namely that epigenetic 

clocks are not influenced by temperature as somatic growth tends to be (Anastasiadi and Piferrer 

2019), and methods are continually refined, speeding up the initial model-building process across 

diverse taxa (Mayne et al. 2020). Here, an epigenetic clock was developed for lingcod, further 

illustrating that conserved CpG sites between evolutionary divergent species (e.g., zebrafish) still 

maintain age-association. Both fin ray and otolith reference datasets were able to generate high-

performing predictive models given the available reference data. The model using otoliths had 

higher absolute error, possibly due to smaller sample size compared to the fin ray referenced 

model. While both models could have benefitted from more thorough sampling of older age 
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classes, as model performance was still quite high, increasing sample sizes might not result in a 

dramatic increase in r2. This highlights the limitations of utilizing machine-learning based 

models. While epigenetic ageing has the advantages of being non-lethal and high throughput, the 

model cannot be extrapolated to ages outside of its calibrated range (Mayne et al. 2021). This is 

the case with other machine learning based models where performance is often reduced outside 

of calibration data. Unlike otoliths where annual growth rings may be consistent throughout the 

life of the fish, epigenetic ageing is limited to the original model’s training data. Additionally, 

the model’s performance decreased with increasing age as younger ages are typically more 

available than older ones, especially in fished populations (Beamish et al. 2006). 

The use of FT-NIR spectroscopy in ageing fish for stock assessments has been 

investigated in temperate and tropical species (e.g., walleye pollock, red snapper, barramundi) 

for purposes of production ageing and has yielded promising results (Helser et al. 2019b, 

Passerotti et al. 2020b, Wright et al. 2021). FT-NIR spectroscopy is advantageous for being rapid 

and non-destructive to the ageing structure and is highly repeatable with as good or better 

precision to that of traditional methods. Moreover, recent developments illustrate FT-NIR 

spectroscopy coupled with machine learning can improve model prediction (Benson et al. 2023). 

Both FT-NIR spectroscopy models created here for lingcod were comparable in performance, 

though the fin ray calibrated model had higher accuracy and lower bias. Overall, both FT-NIR 

spectroscopy models were higher in precision than the epigenetics models in terms of ACV and 

percent agreement. However, as FT-NIR spectroscopy is also a secondary method based on 

predictive analytic models, it is similarly limited due to the availability and accuracy of the 

reference data used to calibrate the model. Also, both alternative methods may require predictive 

model recalibration to account for unseen variability or when factors affecting biological 
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processes or the underlying biochemical mechanisms change. In such cases, reference data using 

traditional microscopic methods will continually need to be collected (though at a much smaller 

percentage) to monitor changes in precision or drift from non-stationary processes, such as 

fishing pressure, changing ocean conditions, and spatio-temporal variability (Heino et al. 2015, 

Lam et al. 2021, Fennie et al. 2023). 

Between the two alternative methods investigated here, DNA methylation and FT-NIR 

spectroscopy, FT-NIR spectroscopy may at present be a more efficient approach for high 

throughput, production ageing requirements for groundfish stocks that are non-threatened and 

where otoliths are regularly collected from survey and fishery sources, though this can change in 

the future as epigenetic ageing methods improve in efficiency or as stock statuses change. The 

FT-NIR spectroscopy model using fin ray reference data had the highest percent agreement and 

lowest error among all comparisons and would be the most promising alternative method for use 

along the U.S. West Coast; however, traditional, microscopic ageing will still serve as an 

indispensable primary method to monitor consistency and precision in the reference data should 

predictive model recalibration be necessary. 
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Table 3.1. -- Precision between traditional age determination methods (fin ray and otolith 
examination) and alternative age determination methods (epigenetics and Fourier 
transform near infrared spectroscopy, FT-NIRS) for lingcod (Ophiodon elongatus) 
was calculated using average coefficient of variation (ACV), average percent error 
(APE) and percent agreement with exact agreement (% Agreement). While the 
median ageing error across studies is an ACV of 7.6 (or a 5.5 APE), there is no 
acceptable standard value of precision as readability is influenced by the species 
and aged structure (Campana 2001). Percentage of age estimates with agreement 
within one year (± 1 yr) and within two years (± 2 yr) are also shown.  

 

 n ACV APE % Agreement ± 1 yr ± 2 yr 

Fin ray vs. Epigenetics 202 9.0 6.4 37.1 85.6 95.0 

Fin ray vs. FT-NIRS 735 8.8 6.2 50.0 92.4 98.8 

Otolith vs. Epigenetics 68 12.8 9.0 20.6 58.8 86.8 

Otolith vs. FT-NIRS 70 8.3 5.9 35.7 80.0 95.7 
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Figure 3.1. -- Performance of the epigenetic model using lingcod (Ophiodon elongates) fin ray reference ages was measured by 
comparing Pearson correlations and mean absolute errors between the A) training data set and B) testing data set. The 
1:1 age agreement line is shown as a black diagonal line on Figure 3.1A and 3.1B. Significant p-value (p < 0.05) 
indicates that fin ray ages and predicted ages from the epigenetic model are correlated. Similar Pearson correlation and 
mean absolute error between training and testing datasets indicates similar performance between training and testing 
data sets.  
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Figure 3.2. -- Performance of the epigenetic model using lingcod (Ophiodon elongates) otolith reference ages was measured by 
comparing Pearson correlations and mean absolute errors between the A) training data set and B) testing data set. The 
1:1 age agreement line is shown as a black diagonal line on Figure 3.1A and 3.1B. Significant p-value (p < 0.05) 
indicates that fin ray ages and predicted ages from the epigenetic model are correlated. Similar Pearson correlation and 
mean absolute error between training and testing datasets indicates similar performance between training and testing 
data sets. 
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Figure 3.3. --  Age agreement plots between traditional lingcod (Ophiodon elongates) age 
determination methods (fin ray and otolith examination) and alternative age 
determination methods (epigenetics and FT-NIRS) to identify systematic under- or 
over-ageing and symmetry. The 1:1 age agreement line is shown as a blue dashed 
diagonal line. Plotted numbers along the line represent the frequency of paired 
samples that had 100% age agreement. Numbers above and below the 1:1 
agreement line indicate the frequency of samples where age estimates differed. In a 
symmetric age-agreement table, disagreements in age would be expected to fall 
randomly on either side of the 1:1 line. 
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INTRODUCTION 

 

Age data are an essential component of modern fisheries stock assessments because they 

are utilized to estimate growth, longevity, maturation, mortality, track cohorts, and characterize 

landings compositions to understand population dynamics of state and federally-managed 

fisheries. The Southeast Fisheries Science Center collectively receives up to 85,000 otolith 

samples annually and is responsible for providing age data to three different management 

councils in multiple regions. Otoliths (inner ear stones) are the primary fish hard part collected to 

estimate fish age, but traditional ageing methods are time-consuming because samples require 

processing, sectioning, and visually counting the incremental annuli using microscopes. Thus, 

the process of production ageing requires a large investment of time and staff resources to 

provide data for stock assessment. Fourier transform-near infrared (FT-NIR) spectroscopy has 

recently been applied to fish ageing with the potential to dramatically increase ageing efficiency 

without any loss in productivity. NOAA Fisheries staff are continuing to evaluate the feasibility 

of FT-NIR spectroscopy for accurately predicting fish ages compared to traditional ageing 

methods. 

FT-NIR spectroscopy has been utilized in the pharmaceutical, chemical, and agricultural 

industries for decades, but has only recently been applied to fish ageing (Robins et al. 2015; 

Helser et al. 2019b). FT-NIR spectroscopy is a non-destructive method that transmits near 

infrared light through a sample, thereby exciting its chemical bonds. Absorbance measurements 

are collected from the scanned object to form a spectral signature, which quantifies the presence 

and concentration of organic bonds and is visualized as a continuous spectrum across the 

relevant wavelength (cm-1) range (i.e., the spectral signature). Peaks in spectral absorbance relate 
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to the chemical composition of the sample in a consistent way. Thus, when spectral data are 

paired with a representative sample of observed ages, a predictive model can be built to predict 

age from spectral data alone without the need for sectioning and ageing thousands of otoliths. 

However, this technique has only been applied to a handful of species and requires further 

investigation. Accuracy, potential bias, and the frequency of model updating must be evaluated 

before age estimates predicted with FT-NIR spectroscopy can be used at a production scale for 

stock assessment. 

We examined white grunt (Haemulon plumierii) as a candidate species for FT-NIR 

spectroscopy because it has relatively high precision among traditional age estimates, adequate 

sample availability, and an upcoming stock assessment scheduled in 2027. White grunt is a reef-

associated coastal fish found in the western Atlantic from the Chesapeake Bay south through the 

Gulf of Mexico and the Caribbean to the coast of Brazil. Previous studies have identified four 

genetically distinct stocks of white grunt: (1) the Carolinas, (2) Southeast Florida and the Florida 

Keys, (3) the eastern Gulf of Mexico, and (4) the Caribbean Sea (O’Donnell et al. 2019). Age 

data indicate that fish from Southeast Florida grow much slower and attain smaller sizes than 

fish collected from North Carolina and South Carolina (Potts & Manooch 2001). Fish from the 

Gulf coast of Florida reach comparable size-at-age to fish from the Atlantic coast of Florida, yet 

both are smaller at age than fish from the Carolinas (Murie and Parkyn 2005). White grunt 

supports important U.S. commercial and recreational fisheries (Potts 2000), but there has never 

been a stock assessment using age-based methods. Additionally, previously planned assessments 

have been delayed for various reasons, one being uncertainty in stock definition (O’Donnell et al. 

2019). The application of FT-NIR spectroscopy to ageing white grunts could provide critical age 
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data to support the upcoming assessment and efficiently provide age data in the future, given the 

26,033 otolith samples currently awaiting processing at the SEFSC Beaufort laboratory. 

The objectives of this study were to examine the efficacy of FT-NIR spectroscopy for 1) 

predicting age of white grunt and 2) predicting age for genetically distinct stocks of white grunt 

in the U.S. South Atlantic (i.e., the Carolinas and South Florida). Our specific goals were to (1) 

develop standardized practices for FT-NIR spectroscopy across various NOAA labs; (2) assess 

the overall efficacy of FT-NIR spectroscopy (i.e., accuracy and precision) by comparing ages 

predicted with FT-NIR spectroscopy models to observed ages for white grunt; and 3) determine 

if single or separate age prediction models are required for estimating ages of white grunt stocks 

in the Carolinas and South Florida.  

 

METHODS 

 

In total, 1,930 Atlantic white grunt otoliths (left otoliths were mostly used; right otolith 

was used if left was missing or damaged) were weighed, scanned with a TANGO-R spectrometer 

(Bruker), sectioned on a Hillquist high-speed saw, and aged under a Nikon stereo-microscope 

with transmitted light. Fish were assigned to each genetic stock based on landing location 

because the majority of samples were fishery-dependent and fishing location was not known. 

Assigning fish to a genetic stock by landing location is the most accurate metric without a known 

fishing location. However, misassignment of genetic stock is possible since fish from the 

opposite stock could be landed in the opposite region. Fish landed in NC, SC, and GA were 

assigned to the Carolinas stock (n = 863). Fish landed between Cape Canaveral and Key West, 

FL, were assigned to the South Florida stock (n = 1,065). A subset of otoliths from each stock 
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was randomly selected (~10 samples per age class; roughly 10% of the entire sample size) and 

comprised the calibration set used to build the FT-NIR spectroscopy predictive model. The 

remaining set of otoliths comprised the validation set and was used to compare accuracy and 

precision between “true ages” and ages estimated with FT-NIR spectroscopy. Age estimates 

provided by the primary reader were compared with age estimates from an expert reader to 

compare accuracy and precision of the observed ages, but consensus ages were not estimated if 

ages differed between readers. The primary reader’s age estimates were considered the “true 

ages” when compared to ages predicted with FT-NIR spectroscopy. Two partial least squares 

(PLS) regression models, one for each genetic stock, were fitted to paired observed versus 

predicted ages in R (R Core Team 2021). The best calibration model was then applied to each 

stock’s validation set with unknown ages and compared to the true ages to assess model 

performance. Comparison metrics included r2, root mean square error of cross-validation 

(RMSECV), root mean square error of prediction (RMSEP), residual percentage difference 

(RPD), and average percent error (APE). 

 

RESULTS AND DISCUSSION 

 

 Morphometric data in this study agreed with previous work indicating that white grunt 

from the Carolinas grew to a larger size and older age than South Florida white grunt (Fig. 4.1). 

Our data also indicated that otolith weight was greater for white grunts from the Carolinas than 

those from South Florida, which was not previously known (Fig. 4.2). In addition, there were 

differences in the quality of age estimates between the two stocks. Reader agreement among 

observed ages for white grunt from the Carolinas was higher and error was much lower (APE = 
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2.8%, Fig. 4.3A) than fish from South Florida (APE = 5.8%, Fig. 4.3C). When compared with 

traditional age estimates, ages predicted with FT-NIR spectroscopy models were less accurate 

and were positively biased at the youngest age class and negatively biased at older ages for both 

stocks. Results from comparisons of calibration versus validation age data sets indicated a better 

correlation between spectral signatures and predicted age for the Carolinas stock (r2 = 0.91, Fig. 

4.3B) than the South Florida stock (r2 = 0.85; Fig. 4.3D). For the Carolinas model, RMSEP was 

1.5, which indicates the model-predicted age had a mean difference of ±1.5 years from the 

observed age; the RPD value of 3.3 indicates a good model fit (RPD > 3). For the South Florida 

model, RMSEP was 1.3, but the RPD was below the accepted performance threshold (RPD = 

2.6). Predicted ages for fish from the South Florida stock had higher APE when compared to the 

true ages (Fig. 4.3C-D), which was likely due to higher ageing error in the traditional ages used 

to build the predictive models, greater variation in size-at-age, and fewer age classes among 

South Florida white grunt. Fish from the South Florida stock experience less seasonality in 

temperature regimes than fish from the Carolinas stock, which likely affects otolith banding 

clarity causing decreased precision in traditional age estimates. We recommend including more 

young (age-0 and 1) and old fish (>age-12), if available, into each calibration model to reduce 

ageing bias. We also recommend using a second age reader to maximize ageing precision 

through consensus ages for the true ages used to build the predictive models. Overall, we 

observed a moderately good correlation between (1) true ages and spectral signatures and (2) true 

ages and model-predicted age, but additional age data and reducing imprecision in input data will 

greatly increase our ability to more accurately predict fish age with FT-NIR spectroscopy. 

We recommend that significant improvement in the precision between predicted and 

observed age estimates is needed before ages predicted with FT-NIR spectroscopy are of 
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sufficient quality for use in production ageing for stock assessment. Reduced precision in age 

estimates will increase uncertainty around stock assessment model parameter estimates and 

affect assessment outputs. Ageing bias at the youngest and older ages will also negatively impact 

assessment model outputs due to cohort smoothing and imprecision, respectively. However, 

ageing bias at older age classes may have little effect on assessment model outputs if bias occurs 

at ages comprising the plus group of the assessment model. Ageing bias can be somewhat 

corrected in stock assessment models by specifying expected ages and age-specific error in the 

ageing error matrix, but increased imprecision around age estimates can erroneously alter 

parameter estimates affected by size-at-age when fitting to multiple data sources in complex 

assessment models. Additional research is needed to improve the precision of predicted ages for 

fish from the South Florida stock. We also recommend further analyses be done to understand 

the influence of sexually dimorphic growth on age estimates, which was not explored in this 

study but is known to affect size-at-age estimates for this species (Potts 2000). Overall, genetic 

differences between stocks that affect size-at-age, growth, or maximum age are important to 

consider when building age prediction models. FT-NIR spectroscopy shows great promise as a 

method to produce indirect age estimates at high volume with great efficiency and acceptable 

precision but requires additional research before applying it to the production ageing of white 

grunt. 
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Figure 4.1. -- Boxplots of length (fork length mm)-at-age (yr) for the two different genetic stocks 
(Carolinas, red and South Florida, blue) of white grunt (Haemulon plumierii) in the 
U.S. South Atlantic. Horizontal lines within the boxes indicate median values, box 
ends indicate the 25th and 75th quartiles, whisker ends indicate 1.5*interquartile 
range, and points indicate outlying values. 
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Figure 4.2. -- Boxplots of otolith weight (g)-at-age (yr) for the two different genetic stocks 
(Carolinas, red and South Florida, blue) of white grunt (Haemulon plumierii) in the 
U.S. South Atlantic. Horizontal lines indicate median values, box ends indicate the 
25th and 75th quartiles, whisker ends indicate 1.5*interquartile range, and points 
indicate outlying values. 
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Figure 4.3. -- Comparison plots of traditional age estimates (primary vs. expert reader age (Panels A and C) and age estimates 
predicted with FT-NIR spectroscopy (Panels B and D) for each white grunt (Haemulon plumierii) stock. Sample sizes 
and average percent error (APE) are shown for each panel. Red and blue points indicate mean values for the Carolinas 
and South Florida stocks, respectively, while gray-scale points indicate individual age estimates with a transparency of 
1/10 (e.g., 10 observations of the same age difference would produce a fully darkened point). Vertical lines indicate the 
95% confidence interval of the mean. The histogram above each panel indicates the sample count for the expert or 
observed ages by age class; the histogram to the right of each panel indicates the sample count for the difference in age 
estimates between the primary and expert reader or observed and predicted age. 
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INTRODUCTION 

 

 Knowledge of the reproductive status of fishes is vital to the sound management of fish 

stocks. Spawning stock biomass (SSB) provides an estimate of the proportion of the stock 

contributing to reproduction and is used to determine stock status and abundance to set catch 

quotas. These estimates are obtained through the construction of maturation schedules (spawning 

ogives) based on field-based observations of ovarian development and provide estimates of the 

proportion of reproductively mature females in a stock or population. In addition to providing 

estimates of spawning potential, knowledge of reproductive strategy and the geography and 

phenology of spawning can greatly benefit our understanding of interactions between a species 

and its environment (e.g., identification of early life stage distribution and dispersal to nurseries 

where young fish develop). In recent decades, climate-driven warming trends have been shown 

to impact fish distribution, phenology, and growth rates (Hollowed et al. 2013). In addition, 

reproductive patterns in fish, such as gonad maturation and ovulation, are often tied to 

temperature thresholds (Alix et al. 2020). Understanding the impacts of climate change on the 

reproductive biology of fish will increase the need for data and for tools with accuracy and 

efficiency in these collections. 

Histological analysis, considered the most accurate method of determining oocyte staging 

(West 1990), involves the microscopic examination of ovary tissues that have been fixed, 

stained, and mounted on a slide. This process allows for the identification of microscopic 

structures and conditions that occur as an ovary develops. However, histological processing is 

effort intensive and incurs costly processing fees from specialized laboratories. To conduct 

histological analysis, ovaries are often collected in the field and preserved in formalin, a 
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hazardous chemical. The cost associated with histological processing, the challenges of working 

with formalin in the field, and the time required for processing and slide analysis are often 

limiting factors to this approach. 

Vibrational spectroscopy is an emerging technology in ecological research that may 

provide an alternative approach for determining maturity and reproductive status of fishes. 

Several spectroscopy techniques have been applied to ovarian tissue. Examples include the use 

of Fourier transform near infrared (FT-NIR) spectroscopy (10,000 to 4,000 cm-1)  to differentiate 

non-spawning from spawning-capable fish (TenBrink et al. 2022) and Raman spectroscopy to 

discriminate egg quality and viability by tracking macromolecule fluctuations during specific 

development stages post-fertilization (Ishigaki et al. 2016). 

Ovary tissue, like most biological tissues, is composed primarily of various proteins, 

lipids, carbohydrates, and phosphates with levels that vary throughout development. As the 

ovary matures, changes observed through histological analysis include structural development 

and material accumulations, which reflect changes in the molecular compositions. Raman 

spectroscopy has unique characteristics that may make it an optimal spectroscopy method for 

detecting changes in the levels and configuration of the molecular components through 

reproductive maturation. In Raman spectroscopy, a laser is used to irradiate a material across a 

range of wavenumbers, and highly sensitive lenses are used to collect the light that is scattered 

back. Scattered light is analyzed and provides a spectrum “fingerprint” with patterns or bands 

unique to the molecular composition and configuration of the sample under interrogation. This 

can be useful when unknown molecular constituents in biological tissues need to be identified or 

quantified. Raman spectroscopy is also less sensitive to water than other spectroscopy techniques 

and therefore may be more useful for biological tissue samples, as they contain large amounts of 
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water (Butler et al. 2016). The use of Raman spectroscopy as a tool to access ovary maturation 

would allow for more rapid, and in-situ, evaluations while reducing the use of hazardous 

formalin and expensive histological processing. 

In this study, we evaluate the potential for Raman spectroscopy to provide information on 

the maturity and reproductive status of walleye pollock (Gadus chalcogrammus), referred to as 

“pollock” hereafter. Pollock is a semi-pelagic, schooling fish widely distributed in the North 

Pacific Ocean and supports highly lucrative commercial fisheries in the Bering Sea and the Gulf 

of Alaska. Reproductive information used in pollock stock assessments is currently based on 

macroscopic evaluation of their gonads (Williams 2007). Visual maturity estimates are collected 

at the point of capture and used to estimate maturation status and spawning phenology. Because 

pollock are a multi-batch spawning species, ovaries may contain oocytes at varying levels of 

maturation and are often difficult to stage macroscopically. Differentiating between immature, 

developing, and spent fish is particularly difficult for this species. In addition, recent research has 

identified shifts in the phenology of spawning (Rogers and Dougherty 2019) and in distribution 

on the spawning grounds for pollock (Eisner et al. 2020). Improved monitoring of this species 

would be beneficial to evaluate changes in reproduction that may impact stock assessment 

estimates and management. 

We hypothesize that 1) mature pollock ovaries with histologically visible yolk 

development (hereinafter referred to as “yolked” ovaries) can be differentiated from pollock 

ovaries with little to no visible yolk development (hereinafter referred to as “non-yolked” 

ovaries) based on the Raman spectra of their oocytes; 2) within non-yolked ovaries, mature but 

not developing and mature but recently spent ovaries can be differentiated from immature or 

early developing ovaries based on the Raman spectra of their oocytes. Further, we explore the 
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ability for this tool to differentiate among progressive reproductive stages in yolked ovaries for 

potential application in spawning phenology studies. 

 

METHODS 

 

 Ovary specimens were collected aboard the NOAA ship Oscar Dyson during the 

Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries 

Science Center’s acoustic-trawl pollock stock assessment surveys. Samples were collected in the 

Gulf of Alaska (GOA) during February and March 2017 (Fig. 5.1; McCarthy et al. 2018). 

Ovaries were removed from the fish, weighed, and placed in a mesh bag and preserved in 10% 

formalin. Additional collections of 1 and 2 year old pollock were included in this study due to 

the rare capture of immature pollock during the prespawning cruises. For these collections, 

young-of-the-year pollock were beach seined and reared through the first two years of life at an 

aquaculture facility at Little Port Walter, NOAA. In preparation for histological analysis and 

Raman spectra collection, a cross-section of tissue from each ovary was processed and stained by 

histology laboratories. We collected one subsample of tissue (<1 g) from a location adjacent to 

the histology tissue sample for spectral data acquisition.  

Immature (IMM) fish are those which have not aged to first maturation. Developing stage 

(DEV) fish show increased oocyte sizes and the development of cortical alveoli and may include 

very early signs of yolk development. Vitellogenic stages (VIT) include increasing yolk 

concentrations as well as the migration of the nucleus. The prespawning stage (PSWN) includes 

a brief period in the annual cycle when yolk droplets, along with the nucleus break down, or 

coalesce. Hydration, or the rapid increase in size due the uptake of water, marks the early 
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spawning stage (SWN), which further progresses with ovulation as oocytes are released from the 

follicles and an increase of empty or post-ovulatory follicles (POFs) is observed. The Partial 

Spent stage (PSNT) accounts for the batch spawning strategy of pollock and where vitellogenic 

stages occur with POFs. Spent stage (SNT) ovaries are composed mostly of POFs and possibly a 

few atretic yolk stages that failed to ovulate. Mature but not developing (MND) ovaries were 

identified as having spawned previously, but which show no signs of development in the capture 

season. Ovary stage assignments were made using the most predominant oocyte structures 

present or by the presence of combinations described above. In addition, each specimen was 

identified with either the presence or absence of visible yolk development regardless of other 

staging identification. 

We acquired Raman spectral data from ovary tissue using a Raman Process BallProbe 

with a 780 nm laser and a wavenumber range of 50-3300 cm-1 (MarqMetrix). The spherical 

sapphire lens on the fiber optic probe was positioned to touch the sample during each 

measurement. The laser power on the samples was 400 mW with an exposure time of 1000 ms. 

Ten repeat measurements were collected and averaged to create one representative spectrum per 

sample. All fluorescent lights were turned off during Raman spectra collection. 

 

Spectra Collection and Processing 

 

 Prior to data analysis, we subtracted a blank spectrum (measured with >2 ft between the 

probe and closest object) from each sample spectrum to eliminate peaks due to the sapphire in 

the fiber optic probe (Raml et al. 2011). Spectra were truncated into the fingerprint region (200-

1800 cm-1) and high frequency region (2600-3250 cm-1). We then preprocessed raw spectral data 
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using extended multiplicative signal correction (EMSC) to normalize spectra (Martens and Stark 

1991) and performed polynomial subtraction using the modified polyfit method to remove 

fluorescent background (Lieber and Mahadevan-Jansen 2003). For the fingerprint region, we 

parameterized EMSC and modified polyfit with seventh-order polynomials. For the high 

frequency region, we parameterized EMSC with a fifth-order polynomial and modified polyfit 

with a third-order polynomial. Savitzky-Golay smoothing was applied to both regions to reduce 

unwanted noise in spectra (Delwiche and Reeves 2010). We parameterized Savitzky-Golay 

smoothing with a second-order polynomial and 25 points. 

 

Statistical Analyses 

 

 We used principal component analysis (PCA) as an exploratory analysis for data 

visualization and to identify spectral outliers. Detection and elimination of outliers was 

performed based on robust calculation of outlier limits (Pomerantsev and Rodionova 2014). 

Values that fell outside a significance level of 0.01 were considered outliers and removed from 

the data set (n = 2). 

We used a two-step analysis to classify samples as biologically mature or immature from 

the Raman spectra of their ovaries. First, we used a partial least-square (PLS) regression analysis 

followed by a linear discriminant analysis (LDA) to classify yolked and non-yolked samples 

(Boulesteix 2004). A PLS regression is a multivariate method commonly used in chemometric 

analysis for dimensionality reduction and to linearize spectral data (Wold et al. 1884, Boulesteix 

2004). In PLS, the independent (here, spectral data) and dependent (here, yolk presence as 

determined by histological analysis) data matrices are decomposed into a set of scores and 
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loadings (hereinafter referred to as latent variables). The latent variables are then used as 

predictors in LDA. Linear discriminant analysis performs well on a smaller number of 

uncorrelated variables (Dudoit et al. 2002). In LDA, the independent variables (here, latent 

variables from PLS) are assumed to have normally distributed probability density functions with 

respect to the dependent variable. Class membership is determined from the class with maximum 

posterior probability. All samples classified as yolked in the PLS-LDA were considered 

biologically mature. A second PLS-LDA was applied to classify the non-yolked samples as 

either biologically mature (if histology indicated it was MND or SNT) or immature (if histology 

indicated it was IMM or DEV). 

To evaluate the ability to further predict the spawning progression of walleye pollock 

ovaries with visual yolk development from their Raman spectra, we used a PLS-LDA to classify 

yolked specimens to their histologically determined reproductive stage (VIT, PSWN, SWN, 

PSNT). Visible yolk at barely discernible levels can sometimes be seen in DEV ovaries and in 

small amounts of residual, yolked oocytes in SNT ovaries. For these stages, yolk occurs at 

minute levels compared to the yolk contained in VIT, PSWN, SWN, or PSNT ovaries, and were 

predicted as non-yolked. Here, yolked samples with histologically determined stages of DEV or 

SNT were removed from this analysis due to insufficient sample sizes (n = 1). 

Variable importance in projection (VIP) scores were calculated for each wavenumber to 

identify the spectral regions most important for classification in each model (Goldstein et al. 

2021). The calculation of VIP includes the covariance between independent and dependent 

variables and reflects how much a variable contributes to describing both independent and 

dependent data (Anderson and Bro 2010). A VIP score of less than one indicates a less important 

variable. 
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Cross-validation was used to determine the optimal number of latent variables 

(Boulesteix 2004) and the predictive ability of the three models on new data. For all categories, 

we report specificities, or the accuracy of rejecting a sample from an incorrect category, 

sensitivities, or the accuracy of assigning a sample to the correct category, and overall model 

accuracy and area under the curve (AUC). Data analysis was conducted in R statistical 

computing software version 4.1.0 (R Core Team 2021). 

 

RESULTS AND DISCUSSION 

 

 We summarize PLS-LDA classification results and whether they support the ability to 

classify fish as biologically mature or immature from the Raman spectra of their ovaries, and 

further, to classify yolked specimens to their histologically determined reproductive stage (VIT, 

PSWN, SWN, PSNT). In total, 226 specimens were included in this analysis (Table 5.1). 

 

Maturity Status 

 

 The Raman spectra of biologically mature ovaries with yolk development were 

differentiable from the spectra of ovaries with little to no yolk development (Fig. 5.3, Table 5.2). 

Spectral data showed clear separation between yolked and non-yolked samples along latent 

variable (LV) 1 and LV2 from PLS used for dimensionality reduction (Fig. 5.4). The optimal 

number of latent variables from PLS used for LDA was 8, which explained 96.34% of variance 

in the spectral data matrix and 88.72% of variance in the response data (here, yolked vs. non-

yolked). All but two samples were correctly classified in the PLS-LDA (99.0% accuracy; AUC 
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of 0.99) (Table 5.3). Wavenumber regions 450-558, 776-818, 838-851, 1192-1214, 1296-1426, 

1474-1510, 1582-1628, 1751-1778, and 2794-2831 cm-1 contributed substantially to variation in 

spectra related to the response variable (VIP > 1) (Fig. 5.3, Table 5.2). All samples classified as 

yolked were considered mature. Ovaries with no yolk development can signify a biologically 

immature fish, but may also be a mature fish under certain circumstances. The differentiation 

between maturity statuses of non-yolked ovaries is historically difficult to determine using 

existing rapid methods (visual maturity). 

The Raman spectra of mature but non-yolked ovaries (MND or SNT) were differentiable 

from the spectra of non-yolked immature ovaries (IMM or DEV (Fig. 5.3). There was separation 

between non-yolked immature and mature ovaries along LV1 and LV2 (Fig. 5.4). The optimal 

number of LVs from PLS used for LDA was 5, which explained 95.03% of variance in the 

spectral data matrix and 71.09% of variance in the response data (here, mature vs. immature). Of 

samples classified as non-yolked, 98.0% of mature samples were correctly classified by PLS-

LDA and 88% of immature samples (AUC = 0.98) (Table 5.3). Wavenumber regions 437-553, 

666-755, 770-784, 873-924, 1062-1130, 1242-1299, and 1455-1465 cm-1 contributed most 

substantially to variation in spectra related to the response variable (VIP > 1) (Fig. 5.3, Table 

5.2). Overall from the two-step analysis, 43 out of 50 (86.0 %) total biologically immature 

samples were corrected classified and 175 out of 176 (99.4 %) total biologically mature samples. 

 

Yolked Stage Progression 

 

 There was less differentiation in Raman spectra among yolked samples by histologically 

determined reproductive stage. Progression in stages with yolk present was visible along LV1 
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and LV5, especially for SWN and PSNT samples, but with overlap among stages (Fig. 5.4). The 

optimal number of LVs from PLS was 9, which explained 94.90% of variance in the spectral 

data matrix but only 42.63% of variance in the response data. The highest classification accuracy 

was for PSNT samples (86.0%; AUC = 0.92) followed by SWN samples (85.0% accuracy; AUC 

= 0.93) and VIT samples (85.1% accuracy; AUC = 0.95) (Table 5.3). The PSWN samples had 

the lowest classification accuracy (78.9% accuracy; AUC = 0.90). Wavenumber regions 324-

339, 422-528, 1573-1587, 2873-2877 cm-1 contributed most substantially to variation in spectra 

related to the response variable (VIP > 1) (Fig. 5.3, Table 5.2). 

The use of Raman spectroscopy to identify molecular changes in biological tissue is 

complex, as each molecular component contributes to information captured in the spectra, and 

the specific functional groups present in the biological tissue are not always known (Talari et al. 

2015). The chemical composition of pollock ovaries has not yet been fully investigated. In 

addition, our application of this technology to identify shifts in molecular composition during 

ovary maturation is also complex, as the individual components of the ovary change over the 

course of maturation. However, patterns in the spectral data and associated molecular 

assignments in published literature provide evidence supporting our model results. Gorbatenko 

and Lazhentsev (2016) analyzed the biological composition of pollock ovaries and showed that 

lipids, proteins, and carbohydrates varied within a broad range of maturation. These authors 

observed the lowest values of these molecular components in post-spawning individuals, while 

the highest lipid and protein content of the gonads was recorded from females at the advanced 

yolk stages.  

Our results suggest that spectroscopy can provide an effective tool in differentiating 1) 

yolked from non-yolked stages and 2) immature fish from mature fish, an important metric for 
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fisheries management. Differentiating yolked stages would also benefit researchers in tracking 

shifts in the capture location, timing, and periodicity of spawning marked by the presence of later 

stage yolked oocytes and partially spent ovaries. 
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Table 5.1. -- Length distribution (in cm) by ovary stage (IMM = immature, DEV = developing, 
VIT = vitellogenesis, PSWN = prespawning, SWN = spawning, PSNT = partially 
spent, SNT = spent, and MND = mature, no development) for walleye pollock 
(Gadus chalcogrammus) collected from the Gulf of Alaska. 

 

  

  IMM DEV VIT PSWN SWN PSNT SNT MND  Total 

Length                    
15 2                2 
20 9                9 
25 6                6 
30 21                21 
35 4                4 
40   1 5 5 1 3 7 8  30 
45   7 26 19 18 18 10 11  109 
50     9 4 8 4 3 4  32 
55       1 2 2 2    7 
60     1   3   2    6 

 
Total 42 8 41 29 32 27 24 23  226 
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Table 5.2. -- Variable importance in projection (VIP) wavenumber (cm-1) ranges for each model 
identifying the spectral regions most important for classification (VIP > 1). 
 

Yolked vs. non-yolked 
Non-yolked:  
Immature vs. Mature 

Yolked:  
Stage Progression 

 227-229  
  280-300 
330-409  324-339 
 374-407  
  409-428 
435-558 437-553 495-528 
  613-623 
 657-760  
  751-770 

776-854 770-784; 787-824 795-863 

 873-924  
  996-1016 
1087-1113 1062-1130; 1144-1175 1026-1173 
1192-1214 1183-1216 1189-1212 
1296-1426 1242-1299 1397-1428 
1474-1510 1426-1512 1476-1483 
 1523-1539  
1555-1560; 1592-1628  1532-1642 
1680-1728; 1749-1778 1606-1692 1677-1778 
2616-2624   
2651-2654 2634-2659 2637-2655 
 2674-2679 2665-2679 
  2690-2695 
2794-2831  2700-2703; 2715-2724; 2777-2781; 2800-2802 
2869-2909 2902-2931 2861-2865; 2872-2913 
2926-3004 2947-3000 2957-2964 
 3013-3022  
3067-3132 3072-3081 3064-3092 
3147-3190  3104-3109; 3128-3155  
  3190-3200 
 3214-3217 3211-3221 
  3231-3232 
  3236-3238 

 



76 
 

Table 5.3. -- Results of classification of walleye pollock (Gadus chalcogrammus) reproductive 
state based on Raman spectra of ovaries. The ratio of correctly predicted samples 
relative to total sample size, the sensitivity (true positive rate), the specificity (true 
negative rate), the balanced accuracy, and area under the curve (AUC) relative to 
the no information rate of the model predictions from cross validation. Results 
shown as proportions of total samples. 

 

Analyses Class Ratio Sensitivity Specificity Balanced 
Accuracy 
(%) 

AUC No 
information 
rate 

1. Yolk 
presence 

non-yolked  
yolk present 

95:96 
129:130 

0.99 0.99 99.1 0.99 0.58 

2. Non-
yolked: 
Maturity 
status 

immature 
mature 

43:49 
46:47 

0.88 0.98 92.8 0.98 0.51 

3. Yolked: 
Stage 
Progression 

vitellogenic 
prespawning 
spawning 
partial spent 

33:41 
20:29 
23:32 
21:26 

0.80 
0.69 
0.72 
0.81 

0.90 
0.89 
0.98 
0.91 

85.1 
78.9 
85.0 
86.0 

0.95 
0.90 
0.93 
0.92 

0.32  
0.32  
0.32  
0.32  
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Figure 5.1. -- Transect line locations for the Alaska Fisheries Science Center’s (AFSC) acoustic-
trawl walleye pollock (Gadus chalcogrammus) stock assessment surveys.  
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Figure 5.2. -- Images reflecting oocyte structures and components used to assign ovary 
maturation stages in walleye pollock (Gadus chalcogrammus). Immature oocytes 
are characterized by small, tightly grouped previtellogenic oocytes; they enter the 
maturation cycle and begin to develop with cortical alveoli and early vitellogenesis 
(or yolk accumulation; as yolk continues to accumulate, the oocyte increases 
exponentially in size and is considered spawning-capable. Oocytes continue to 
increase in size during vitellogenesis, followed by coalescence and hydration 
during the pre-spawning stage. Evidence of spawning includes the presence of 
hydrated oocytes and post-ovulatory follicles (POFs; the structural support of 
oocytes during development). After spawning, the remaining follicle structures and 
residual oocytes that remain are resorbed during the spent stage. A resting or 
reproductively inactive stage (non-spawning; is often identified as the length of 
time between spent and developing where the ovary appears inactive or with signs 
of late resorption, and early perinuclear development. 
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Figure 5.3. -- Raman spectra of walleye pollock (Gadus chalcogrammus) ovaries preprocessed with extended multiplicative scatter 
correction, polynomial subtraction, and Savitzky-Golay smoothing. The left column shows all spectra, and the right 
column shows average spectra and standard error for a) yolked vs. non-yolked samples, b) the maturity status of samples 
predicted as non-yolked, and c) the finer-scale stage progression for samples predicted as yolked (VIT = vitellogenesis, 
PSWN = prespawning, SWN = spawning, and PSNT = partial spent). Wavenumbers identified as important for 
projection (VIP score > 1) with respect to the response variables are shown highlighted in the white spaces. All other 
wavenumbers are grayed out (VIP scores < 1).  
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Figure 5.4. -- Scores on latent variables with 95% confidence ellipses shown from partial least 
squares dimensionality reduction for a) yolked vs. non-yolked samples b) the 
maturity status of samples predicted as non-yolked and c) the spawning phenology 
of samples predicted as yolked (VIT = vitellogenesis, PSWN = prespawning, SWN 
= spawning, and PSNT = partial spent) based on Raman spectra of walleye pollock 
(Gadus chalcogrammus) ovaries. The latent variables with the most differentiation 
by response variable shown for each analysis. 
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INTRODUCTION 

 

Fourier transform near infrared (FT-NIR) spectroscopy is an emerging method to 

estimate age of marine fishes. In this method, hard structures traditionally used for ageing fish 

(e.g., otoliths and vertebrae) are irradiated with light from the near infrared (NIR) spectrum. 

Organic molecules comprising these structures absorb NIR light at different wavenumbers 

depending on their chemical, and to a lesser extent, physical, composition. Throughout the 

lifespan, the physical and chemical characteristics of these structures change, and these changes 

are reflected in NIR absorbance spectra. FT-NIR spectroscopy has been previously shown to be 

an effective method at predicting ages of individuals through the use of partial least squares 

(PLS) regression models relating NIR absorbance spectra to fish age, with models trained on 

known-age samples of otoliths or vertebrae (Arrington et al. 2022, Healy et al. 2021, Passerotti  

et al. 2020b, Rigby et al. 2016). This method has been applied to shorter-lived teleost species 

(Healy et al. 2021, Passerotti et al. 2020b) and smaller elasmobranch species (Arrington et al. 

2022), but few studies have used it to age long-lived teleosts and no studies to date have used it 

to age large-bodied sharks. 

We assessed the efficacy of FT-NIR spectroscopy to predict the age of two hard-to-age 

species in the northwest Atlantic: Acadian redfish (Sebastes fasciatus) and blue shark (Prionace 

glauca) using otoliths and vertebrae, respectively. We also investigated the optimal sample 

presentation for blue shark vertebrae given their large size. Finally, we evaluated the efficiency 

of FT-NIR spectroscopy scanning with respect to processing times associated with traditional 

ageing of both species. 
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METHODS 

 

Samples  

 

 Acadian redfish sagittal otoliths were collected by the NOAA Fisheries Northeast 

Fisheries Science Center (NEFSC) bottom trawl survey from 2016-2019 and were stored dry 

after collection. A total of 1,891 otoliths were selected for FT-NIR spectroscopy analysis. All 

otoliths were cleaned by wiping with 70% ethanol using a lab tissue, and blotted dry before 

scanning.  

Blue shark vertebrae were collected by the NEFSC Apex Predators Program from 1994-

2018. A total of 184 whole vertebrae and 188 sectioned vertebrae were selected for FT-NIR 

spectroscopy analysis. All samples were cleaned of bulk tissue with a scalpel and cleaned of any 

residual tissues by immersion in a bleach solution and rinsing with water. Afterward, vertebrae 

were stored in 70% ethanol, and were blotted dry before scanning. Vertebrae were not allowed to 

fully dry, so as not to jeopardize their use in future traditional ageing. 

Traditional ages were generated by expert age readers for otolith and vertebra samples 

using secondary structures from the same fish (for Acadian redfish, the sectioned paired otolith, 

and for blue shark, a second vertebra from the same shark).  

 

Spectroscopy 

 

 All samples were scanned on a Bruker TANGO-R near infrared spectrometer (Bruker, 

Billerica, MA). Otoliths were covered with a rubber-rimmed gold reflective stamp while 

scanning to reduce stray light. Vertebrae were scanned without the stamp due to size limitations. 
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All absorbance spectra were collected at a resolution of 64 scans every 16 wavenumbers. 

Acadian redfish were scanned sulcus side down with rostrum oriented horizontally on the sample 

window. Blue shark vertebrae were scanned in two different sample presentations: whole centra 

and half centra. Whole vertebrae were scanned with the focus centered over the sample window 

and the neural arches facing forward, and half centra were sectioned frontally through the focus 

and scanned with the cut side facing down, with half of the resulting “bowtie” centered over the 

sample window (Fig. 6.1). The models from the two vertebra presentations were compared to 

determine the optimal presentation for age predictions. 

 

Data Analysis 

  

 Traditional ages were paired with FT-NIR spectra, and PLS regression models were 

developed for training and test sets of samples using OPUS software (Bruker Scientific).  

Training sets comprised a subset of randomly selected samples from the original sample 

collections (n = 500 for Acadian redfish, n = 88 whole centra and 94 half centra for blue shark), 

with samples selected proportionally to the overall age distribution of each sample set. Sample 

sizes for Acadian redfish models were based on preliminary work that found age prediction did 

not meaningfully improve with calibration set sample sizes above 500 (Rubin, unpublished data). 

Test sets comprised the remaining samples for each species. Acadian redfish spectra were 

preprocessed using a Savitsky-Golay first derivative transform with 17-point smoothing, and 

blue shark spectra were preprocessed using a standard normal variate transformation. The 

models were assessed using the coefficient of determination (r2), root mean square error of cross 

validation (RMSECV) and of prediction (RMSEP), residual prediction deviation (RPD), model 

bias, and slope. 
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RESULTS 

 

 FT-NIR spectroscopy models predicted age to within 1.8 years and 1.7 years for Acadian 

redfish training and test sets, respectively (Table 6.1). FT-NIR spectroscopy predicted ages 

showed strong correlation with traditional ages (r2 = 0.937), although regression fit was worse at 

older ages (Fig. 6.2). Average scanning time for otoliths was 1.1 minutes per sample, with an 

additional 0.75 minutes required for cleaning otoliths prior to scanning. 

Blue shark FT-NIR spectroscopy models predicted age to within a similar prediction 

range (1.5-1.8 years) as otoliths but with poorer correlation of predicted and traditional age (r2 = 

0.790 for whole centra, 0.812 for half centra, Fig. 6.2). Models trained on absorbance spectra of 

half centra predicted ages better than whole centra models (RMSECV = 1.82 years for whole 

centra and 1.68 years for half centra; RMSEP = 1.56 years for whole centra and 1.5 years for half 

centra, Table 6.1). Average scanning time for whole centra was also 1.1 minutes, but half centra 

required sectioning, which took an average of 5-10 minutes per vertebra, making the use of half 

centra for FT-NIR spectroscopy substantially slower. 

 

DISCUSSION 

 

 Preliminary findings indicate that FT-NIR spectroscopy may be useful for predicting age 

in Acadian redfish and blue shark using rapid scans of otoliths and vertebrae, respectively. 

However, while otoliths required little preparation for scanning, blue shark vertebrae often 

exceeded the physical size of the spectrometer scanning window and required sectioning to 

facilitate better prediction results. Additional work to find optimal sample presentation for large 

shark vertebrae is needed. Prediction results for sharks were not as promising as those for 
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Acadian redfish otoliths, which may also stem from high subjectivity in vertebral ages and the 

lack of age validation for blue shark.  

 The primary advantage of using FT-NIR spectroscopy is its processing speed. While 

scanning time was short across both types of ageing structures, otolith cleaning added an average 

of 0.75 minutes per sample and vertebra sectioning added 5-10 minutes per sample. These 

additional processing steps reduce the efficiency gains of FT-NIR spectroscopy for ageing, 

although overall times are still slightly better than traditional ageing processes. Further model 

development and improvement in sample presentation for shark vertebrae are needed to fully vet 

FT-NIR spectroscopy as a potential replacement for traditional ageing. 
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Table 6.1. -- Fourier transform near infrared spectroscopy calibration and validation model results for Acadian redfish (Sebastes 
fasciatus) and blue shark (Prionace glauca). RMSECV = root mean square error of the cross validation, RMSEP = root 
mean square error of the prediction, and RPD = residual prediction deviation. 

 
 Calibration  Validation 

Data n r2 RMSECV RPD Bias Slope  n r2 RMSEP RPD Bias Slope 

Acadian redfish 500 93.86 1.81 4.04 -0.00775 0.942  1391 93.72 1.73 3.99 0.00384 0.966 

Blue shark whole centra 88 74.6 1.82 1.98 -0.0318 0.768  96 79.03 1.56 2.18 -0.008 0.805 

Blue shark half centra 94 78.21 1.68 2.14 0.01 0.797  94 81.15 1.5 2.32 -0.202 0.902 
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Figure 6.1. -- (A) Whole and (B) half blue shark (Prionace glauca) vertebral centra centered 
over the spectrometer scanning window.
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Figure 6.2. --  Cross validation models for (A) Acadian redfish (Sebastes fasciatus), (B) blue shark (Prionace glauca) whole centrum 
scans, and (C) blue shark half centrum scans, and test set validation models for (D) Acadian redfish, (E) blue shark whole 
centrum scans, and (F) blue shark half centrum scans. The green line represents a 1:1 relationship and the blue line is the 
regression line between traditional and Fourier transform near infrared spectroscopy (FT-NIRS) predicted age for each 
model. Gray shading represents the 95% confidence interval for the regression model. 
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INTRODUCTION 

 

 Shortbelly rockfish are an ecologically important forage fish off the West Coast region of 

North America. The species' lifespan can be up to 22 years, and the maximum length is 35 cm 

(13.7 in) (Pearson et al. 1991). This species of rockfish can be found from La Perouse Bank, 

Vancouver Island, BC, to San Benito Island, Baja California. In the water column, adults can be 

found at depths from 91 to 491 m (300 to 1620 ft) but occur most commonly at 150 to 200 m 

(495 to 665 ft) (Love et al. 2002). They are generally a pelagic midwater schooling species. 

Shortbelly rockfish mature early; 50% of females are mature by age 3 and 100% by age 4 

(Wyllie-Echeverria 1987). This species of rockfish is important to its ecosystems as it is a forage 

fish, often prey for salmon and other rockfishes. 

 Shortbelly rockfish are caught in significant numbers in regional surveys, including the 

West Coast Groundfish Bottom Trawl Survey (WCGBTS), the primary goal of which is to 

estimate abundance to support stock assessments of chilipepper and several other species of 

slope and shelf rockfish species along the coast (widow, chilipepper, bocaccio, and several 

others). The trawl survey is also used to estimate young-of-year ages (in days) and to evaluate 

regional and interannual variability in growth and recruitment. 

 The shortbelly rockfish stock was last assessed in 2007 and has further data to update 

models. The previous 2007 assessment was modeled using Stock Synthesis 2, which takes age 

and size into account. The model treats cohorts as a collection of fish that has a mean and 

variance of size-at-age (Field et al. 2007). 

 This study was initiated to explore the feasibility of using Fourier transform near infrared 

(FT-NIR) spectroscopy for age determination of shortbelly rockfish. Methods of using shortbelly 

otoliths for the FT-NIR spectroscopy Tango machine were decided upon due to having an 
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abundance of already-aged shortbelly otoliths. Shortbelly rockfish were chosen as the focal 

species of this study because they are fairly short-lived for a Sebastes species. Shorter-lived 

species have been shown to have better age prediction results from otolith spectra. Samples came 

from a region-wide distribution along the West Coast from a single survey source. This study 

will further analyze changes in growth by latitude, as well as changes in growth by sex. Samples 

came from the same source with the same age readers, resulting in less aging bias.  

 In addition, we explored the potential for relationships between growth and latitudinal 

indices. We also explored the suitability of how little an otolith could weigh to produce spectral 

scans of optimal and reproducible results. 

 

METHODS AND RESULTS 

 

 The shortbelly rockfish otolith samples sourced from WCGBTS covered the entire West 

Coast region and were collected from 2011-2013 (n = 466). The available metadata included 

individual fish weight, length, sex, capture date, location, and depth. Shortbelly rockfish otoliths 

were aged at the Southwest Fisheries Science Center in Santa Cruz, CA, by Don Pearson. 

 This study’s shortbelly rockfish samples were divided into North, Central, and South 

regions from Alaska to California in an effort to represent growth along the West Coast region. 

The study followed a standardized protocol that was specific to this species and included otolith 

preservation methods as well as species-specific accessory use when using the TANGO FT-NIR 

machine. We found that there is in fact a weight limitation of how ‘small’ an otolith could weigh 

for this study. A Teflon disc with a 4-mm aperture was used to scan shortbelly rockfish otoliths. 

 We also evaluated time efficiency of FT-NIR scanning as an aging method relative to 

traditional methods for shortbelly rockfish. For the traditional ‘break and burn’ method, one 
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otolith takes 5 to 10 minutes to prepare and age, resulting in 20 otoliths aged in ~1 hour. Using 

the Tango, one otolith scan takes ~45 seconds, resulting in 20 otoliths aged in ~15 minutes. If 

calibrated for the species, this method can effectively increase the number of otoliths aged. 

 Concluding the initial timeframe of the study, the stages of modeling are still exploratory. 

Goals are to see which models produce the best analysis results given the data we have. 

 

FUTURE DIRECTIONS 

 

 Future research objectives include the following: 

• Include sex as a predictor of age to determine if it is a significant factor. 

• Many Sebastes species exhibit dimorphic growth. Evaluate whether separate PLS 

models are needed for each sex. 

• Quantify ageing error between traditional ages and FT-NIR spectroscopy. 

• Continue exploring model selection and covariates. 

• Explore cross-validation methods. 

• Explore patterns in growth by latitude, which may have implications for species 

management. 

• Determine whether there is increased error in age estimates by latitude. Rockfish are 

becoming more difficult to age in the southern region of the California Current, where 

seasonality is weaker, and intraseasonal and interannual variability is stronger in 

comparison to latitudinal regions moving farther north. 
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ABSTRACT 

 

 Fish age is a critical data input for estimating longevity, growth, maturity functions, and 

mortality in age-structured stock assessment models. However, providing these age estimates is a 

labor-intensive process and can often lead to delays in providing age data for an assessment. 

Fourier transform near infrared (FT-NIR) spectroscopy may provide a more rapid and objective 

method for providing age estimates from fish otoliths and perhaps move fish ageing closer to 

providing real-time data for stock assessments. In this study, FT-NIR spectroscopy was applied 

to otoliths from gag, Mycteroperca microlepis, collected from the U.S. Gulf of Mexico (GOM). 

Gag is a protogynous hermaphroditic species that supports important commercial and 

recreational fisheries in the GOM. Objectives of this study were to: 1) investigate FT-NIR 

spectroscopy to estimate fish age from otoliths of gag, and 2) explore potential patterns in FT-

NIR spectra from a small set of otoliths for which histological sex had been assigned to 

investigate if FT-NIR spectra would differ among males and females. Whole otoliths were 

scanned with an FT-NIR spectrometer and traditional age estimates assigned from whole or 

sectioned otoliths. The spectra and corresponding age data were subset into calibration and test 

sets, and partial least squares regressions (PLS) fit to each of the two sets. Three types of ages 

(annulus count, calendar age, and fractional age) were input into separate PLS predictive models 

to investigate which age type would provide the best performing model. PLS models that used 

fractional ages slightly outperformed the other two age types for both the calibration and test sets 

(calibration n = 1,230: r2 = 0.89, RMSECV = 0.888, test n = 809: r2 = 0.90, RMSEP = 0.947). 

Results from principal component analysis of FT-NIR spectra by sex (n = 30) showed some 

separation between females and males; however, this was only a small set of data, so increasing 

sample size will be the next step to see if this pattern continues to hold. Additional research and 
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development are required before this technology can be fully implemented in production ageing 

for fisheries management, but results from ongoing case studies show promise.  
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INTRODUCTION 

 

 Fish age is a critical data input for estimating longevity, growth, maturity functions, and 

mortality in age-structured stock assessment models. However, these ages are often subject to 

poor reader precision, which can lead to ageing error being propagated through stock assessment 

models (Beamish and McFarlane 1983; Campana 2001). Furthermore, conventional methods 

(e.g., microscopic interpretation) for providing these age estimates is a labor-intensive and time-

consuming process that can often lead to delays in providing age data for an assessment. 

Oftentimes, due to the time-consuming process of preparing age structures and estimating age, 

subsampling strategies are needed to provide a subset of age estimates for stock assessment. To 

meet the need for more stock assessments or to provide more real-time age data to support the 

Fishery Management Councils, more efficient alternatives to the conventional methods for 

providing age estimates are needed. 

In recent years, Fourier transform near infrared (FT-NIR) spectroscopy has been applied 

to predict fish age from otoliths (Wedding et al. 2014, Helser et al. 2019b, Passerotti et al. 

2020b) and skate vertebrae (Arrington et al. 2022), to classify fish species from different 

ecosystems (Benson et al. 2020), to assess fish condition (Goldstein et al. 2021), and to predict 

spawning status (TenBrink et al. 2022). While relatively new to applications in fish ecology, FT-

NIR spectroscopy is a well-established method that has been used across a wide range of 

industries (e.g., agricultural, pharmaceutical, dairy products, etc.) to ensure quality 

control/quality assurance. It is a rapid, non-destructive process that requires little to no sample 

preparation. Applications of FT-NIR spectroscopy, whether in industry or fisheries science, rely 

on developing a calibration model that relates a feature of interest (e.g., analyte concentration, 

fish age, etc.) to an NIR spectrum. The calibration model is then applied to another set of data 
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(i.e., test) to determine how well the calibration model will predict unknown data. For predicting 

fish age, predictive calibration models rely on age estimates assigned by either an individual 

reader or from consensus ages to provide the reference age. Thus far, FT-NIR spectroscopy has 

been applied to predict ages for red snapper, Lutjanus campechanus (Passerotti et al. 2020b) and 

gray snapper, Lutjanus griseus (Barnett, unpublished data) from the Gulf of Mexico (GOM), and 

NIR-predicted ages from each species has shown promising results. Therefore, to further 

investigate FT-NIR’s applicability for predicting fish age, otoliths from other species need to be 

scanned and predictive models built to determine the feasibility of applying this technology to 

predict ages for other species. 

Gag, Mycteroperca microlepis, are a moderately long-lived species (maximum observed 

age 33 years; SEDAR 2021) that support economically important commercial and recreational 

fisheries in the GOM. As juveniles, gag generally settle into seagrass beds (Switzer et al. 2012) 

and then make an ontogenetic shift offshore to deeper reefs (Bullock and Smith 1991, Carruthers 

et al. 2015). However, gag are predominantly spatially segregated during most of the year until 

adult females and males come together to spawn (Lowerre-Barbieri et al. 2020). Gag are a 

protogynous hermaphrodite (i.e., born as female but change to male), and most commercially-

landed fish are not sexed during dockside sampling since the fish are usually gutted at sea. Gag 

are federally managed and highly regulated in the GOM (GMFMC 2013), and their stock status 

is currently listed as overfished and undergoing overfishing (SEDAR 2021). Most otoliths from 

gag are aged whole, given that their annuli are more easily identified from whole otoliths rather 

than sectioned otoliths. Only otoliths from older fish and those with annuli that are difficult to 

interpret are typically sectioned. Therefore, it was of interest to predict fish age using FT-NIR 

spectra measured from whole otoliths of gag. 
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 The objectives of this study were to 1) investigate FT-NIR spectroscopy to estimate fish 

age from otoliths of gag, and 2) explore potential patterns in FT-NIR spectra from a small set of 

otoliths for which histological sex had been assigned to investigate if FT-NIR spectra would 

differ among males and females. 

 

METHODS 

 

Sample Collection 

 
 Sagittal otoliths from gag were collected from the GOM for years 2017-2019 by fishery-

dependent and fishery-independent sources. Otoliths were stored dry in coin envelopes and 

archived at the National Marine Fisheries Service, Panama City Laboratory (PCL). An additional 

set of gag otoliths, for which sex was histologically assigned, collected from 2018-2019 by 

Florida Fish and Wildlife Research Institute (FWRI) were sent to PCL to investigate if sex could 

be identified based on FT-NIR spectra. Whole otoliths were weighed to the nearest 0.1 mg. Most 

otoliths were aged whole, and remaining otoliths from older fish and those with annuli that were 

difficult to interpret were sectioned using a Hillquist Thin Section Machine (Hillquist Inc.). 

Calendar ages were based on annulus counts and marginal edge code assignment. For all fish 

with a wide translucent zone (i.e., translucent zone > 2/3 of new growth after the last observed 

opaque zone) and landed between 1 January and 30 June, annulus count was advanced by one 

year. Calendar age for all other fish was set equal to the annulus count. Fractional (i.e., 

biological) age was calculated using calendar age, date of peak spawning (1 March), and date of 

capture using the following equation: 
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  AF = AC + ((DC – DS)/365), where 

   AF = fractional age (years) 

   AC = calendar age (years) 

   DC = date of capture 

   DS = date of peak spawning 

 

FT-NIR Spectroscopic Measurements 

 

 Otoliths were scanned using a Bruker Multi Purpose Analyzer II (MPA II) FT-NIR 

spectrometer. OPUS software (version 8.5, Bruker Optics, Ettlingen, Germany) was used to 

acquire diffuse reflectance measurements of all otoliths. Otoliths were removed from coin 

envelopes, placed on the integrating sphere in a concave up position, and covered with a gold-

coated reflector stamp (see Benson et al. (2020) for more details). Spectral absorbances for all 

otoliths were acquired between 11,500 and 4,000 cm-1, averaged across 64 scans, and with a scan 

resolution of 16 cm-1. Spectral data for the ageing component of this study were preprocessed 

with first derivative, second order polynomial, and a 17-point Savitzky-Golay smoothing 

function. Otoliths received from FWRI were preprocessed using first derivative plus mean 

centering.  

 

Data Analysis 

 

 For the ageing part of this study, a total of 2,060 samples were selected; however, 21 

samples had to be excluded from further analysis due to adhering tissue remaining on the otolith 

surface. A linear regression was fit to fractional age and left otolith weight. The spectra and 
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corresponding age data were divided into calibration and test sets using OPUS software. The 

calibration set consisted of 60% of the samples (n = 1,230), and the test set consisted of 40% (n = 

809). Partial least squares regressions (PLS) were fit to each of the two sets. Calibration models, 

which used a cross validation method (i.e., “leave-one-out”), were evaluated using the root mean 

square error of cross validation (RMSECV) to determine the predictive power on new data, and 

the test models were evaluated using the root mean square error of prediction (RMSEP) as a 

measure of prediction error. Three types of ages (annulus count, calendar age, or fractional age) 

were input into separate PLS predictive models to investigate which age type would provide the 

best performing model. Percent agreement for the two methods, traditional observed ages and 

FT-NIR predicted ages, was investigated using calendar ages. However, to compare between 

these two methods, FT-NIR predicted ages, which are output as continuous numbers, were 

rounded to an integer age. FT-NIR predicted ages with a decimal of 0.5 or higher were rounded 

up to the next integer (e.g., 3.5 rounded to 4), and those with a decimal age <0.5 were rounded 

down (e.g., 3.4 rounded to 3). Principal component analysis (PCA) using Solo+MIA 9.1 

(Eigenvector Research, Inc., Manson, WA USA) chemometrics software was used to investigate 

patterns in the spectra from otoliths (n = 30) sent by FWRI. 

 

RESULTS AND DISCUSSION 

 

 Calendar ages for the PCL samples ranged from 2 to 26 years, and fork lengths ranged 

from 320 to 1,226 mm (Fig. 8.1A). The linear regression showed a high correlation (r2 = 0.86, n 

= 1,333) between fractional age and left otolith weight (Fig. 8.1B). PLS models that used 

fractional ages slightly outperformed the other two age types (annulus count, Figs. 8.2A and 

8.2B, and calendar ages, Figs. 8.2C and 8.2D) for both the calibration and test sets (calibration, n 
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= 1,230: r2 = 0.89, RMSECV = 0.888, test n = 809: r2 = 0.90, RMSEP = 0.947; Figs. 8.2E and 

8.2F). Most otoliths from gag are aged whole given that their annuli are more easily identified 

compared to sectioned otoliths from gag. Percent agreement analysis showed that the traditional 

reader age had a higher (>70%) agreement for 0 difference in calendar age than the FT-NIR-

predicted age (~50%; Fig. 8.3). However, it is possible that percent agreement of the FT-NIR-

predicted age could be affected by the age rounding process, given that some ages are rounded 

either up or down. To explore this further, a set of traditional reader ages using 3-year-old fish as 

an example (n = 57) were plotted against capture date represented as day of year (Fig. 8.4). 

Results from this exploratory analysis showed that rounding to the nearest integer caused these 

3-year-old fish to be placed in four age classes: age-2 (n = 1); age-3 (n = 35); age-4 (n = 17), and 

age-5 (n = 4) (Fig. 8.4A). Exploring this rounding scenario further, this same set of 3-year-old 

fish (n = 57) with decimals <0.99 were rounded down to the next lower integer (e.g., 3.99 

rounded to 3), which placed slightly more (n = 38) of the 3-year-olds in their respective 3-year 

age class (Fig. 8.4B). Since most stock assessments rely on calendar ages to assess recruitment 

and year class strength, a better method and understanding is needed for converting the FT-NIR-

predicted ages (i.e., continuous numbers) to an integer age. 

There were 14 females, 14 males, and two transitional gag included in the FWRI data set. 

A plot of absorbance by wavenumbers showed otoliths from males having higher absorbance 

than females (Fig. 8.5A). Spectra from otoliths of the two transitional fish were intermixed with 

spectra from the otoliths of females (Fig. 8.5A). Results from the PCA of FT-NIR spectra by sex 

showed some separation between histologically-assigned males and females (Fig. 8.5B). 

However, this was only a small sample set of 30 samples, so increased sample size will be the 

next step to see if this pattern continues to hold. One potential factor that may be driving this 

separation is otolith weight, since otoliths from males tended to be heavier compared to females 
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and transitional gag. Passerotti et al. (2020b) found that for most otoliths in their study, FT-NIR 

spectra predicted otolith weight within a milligram or less, but they went on to conclude that 

other factors may also be influential in driving this relationship. It is possible that the proteins 

incorporated into an otolith could provide markers for development and physiological change 

during a fish’s life (Thomas et al. 2019). Indeed, otolith proteomics data suggests otoliths may 

archive sex-specific proteins and hormones (Oliver Thomas, personal communication). Since 

FT-NIR spectroscopy is often used to identify protein content from a sample (Ingle et al. 2016), 

it may be useful in differentiating sexes from otoliths based on sex-specific proteins incorporated 

into the organic matrix of an otolith (Rideout et al. 2023). A recent proteomics study on otoliths 

from Atlantic cod, Gadus morhua, revealed at least two proteins (SPATA6 protein in males and 

Vitellogenin-2-like in females) that are sex-related biomarkers (Rideout et al. 2023). If the 

spectral patterns observed for females and males in the current study should continue to hold as 

more otoliths are scanned from gag that have a histological sex assigned, it may be possible that 

sex could be assigned from otoliths, particularly for commercially-landed fish that are gutted at 

sea and no field sex can be assigned by the dockside samplers. Sex ratios for gag are difficult to 

assign given that females and males exhibit spatial segregation until coming together to spawn 

(Lowerre-Barbieri et al. 2020). For a hermaphroditic species such as gag, it could provide a 

method to better understand the percentages of males and females that are being caught in the 

fishery.  

Overall, FT-NIR predicted ages for gag collected from the GOM tended to be in good 

agreement with the traditional reader ages, which provide promising results, but more otoliths 

need to be scanned, particularly for younger and older ages. Since stock assessments generally 

rely on calendar ages to assess recruitment and year class strength, additional research and 

perhaps stock assessment simulations are needed to find a best practice for converting the FT-
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NIR-predicted ages, which are continuous numbers, to an integer age. Most otolith spectra 

showed an increase in absorbance in specific wavenumber regions as age increased. It is possible 

that this increased absorbance may be due to proteins, which are incorporated into the otolith 

matrix (Thomas et al. 2019). To investigate this further, research on otolith proteomics for red 

snapper, Lutjanus campechanus, and walleye pollock, Gadus chalcogrammus, is currently 

underway. These two species were chosen given that their genomes have been sequenced. The 

goal for the proteomics research is to try and learn more about what FT-NIR spectroscopy 

measures from an otolith that is so closely related to age. Having a better understanding of what 

FT-NIR spectroscopy is measuring from an otolith will perhaps provide guidance for building 

better predictive models and provide knowledge about the uncertainty or error around an FT-NIR 

predicted age. Additional research and development are required before this technology can be 

fully implemented in production ageing for fisheries management, but results from ongoing case 

studies, such as those presented here for gag, show promise.  
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Figure 8.1. -- Scatterplots of A) fork length versus fractional age, and B) fractional age versus 
left otolith weight for Gulf of Mexico gag, Mycteroperca microlepis.  
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Figure 8.2. -- Results from partial least squares (PLS) regression for A) calibration and B) test 
sets using annuli count as reference age, C) calibration and D) test sets using 
calendar age as reference age, and E) calibration and F) test sets using fractional 
age as reference age for Gulf of Mexico gag, Mycteroperca microlepis. R2 = 
coefficient of determination; RMSECV = root mean square error of cross 
validation; RMSEP = root mean square error of prediction.  
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Figure 8.3. -- Percent agreement between two age readers and Fourier transform near infrared 
(FT-NIR) predicted age (gray bars) and reference age (black bars) for Gulf of 
Mexico gag, Mycteroperca microlepis. 
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Figure 8.4. -- Exploratory analysis for a set of 3-year old gag (Mycteroperca microlepis) showing 
the potential impact of rounding Fourier transform near infrared (FT-NIR) 
predicted ages A) up (decimal age ≥ 0.5) or down (decimal age < 0.5), and B) 
rounding down (decimal age ≤ 0.99) to the next lower integer.  



115 
 

 

Figure 8.5. -- A) Fourier transform near infrared (FT-NIR) spectra, and B) principal component 
analysis of FT-NIR spectra from otoliths of gag (Mycteroperca microlepis; n = 30) 
colored by histologically-assigned sex.  
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INTRODUCTION  

 

Otolith scanning using Fourier transform near infrared (FT-NIR) spectroscopy was used 

to explore the chronological age of sablefish (Anoplopoma fimbria) (n = 1,357) and Pacific hake 

(Merluccius productus) (n = 2,337) caught off the West Coast of the contiguous U.S. in 2019. 

This non-destructive spectroscopic scanning procedure was directly compared to the slower 

traditional method of ageing (TMA). The TMA for both sablefish and Pacific hake is the 

standard ‘break and burn’ method for otoliths. Using FT-NIR spectroscopy for ageing otoliths 

was first espoused by Wedding et al. (2014) and further advocated by Helser et al. (2019b). 

 

METHODS 

 

Near infrared spectrometry produces spectra that show the intensity of the response of the 

molecular structure to different wavelengths on the infrared scale (Fig. 9.1). To start, an iterative 

partial least squares (iPLS) model was used to define ranges of spectra with the most 

information. Partial least squares (PLS) models applied to those informative iPLS ranges gave 

lack-luster results. Hence neural net models using the same data were researched, deployed in R, 

and directly compared to the PLS models.   

Keras software (https://keras.io) that sits on top of Google’s TensorFlow software 

(https://www.tensorflow.org) is an industry standard for neural net models and was selected for 

this task. A complete port of Keras is available as an R package (https://tensorflow.rstudio.com; 

RStudio is not needed). On the penultimate validation step, the main data was split into the 

training set and the test set, using a 2/3, 1/3 split. On the last validation step, a k-fold model with 

10 levels was employed. For the k-folding, one tenth of the data was left untouched for testing 

https://keras.io/
https://www.tensorflow.org/
https://tensorflow.rstudio.com/
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the 2/3, 1/3 model which was run on the remaining 90% of the data. This was repeated for each 

one tenth of data until each otolith had a predicted age using a model that did not contain the 

otoliths for which the age was being predicted. Starting with different pseudo random numbers, 

the entire k-folding process was repeated 20 times. Medians across predicted ages for each 

otolith were then taken as each complete k-fold model was added sequentially, for a total of 20 

medians. Across all otoliths, various summary statistics that measure how close the median of 

the predicted ages were to the respective TMA were calculated. Along with the original order, 

five different randomized orders of the additions over the 20 complete k-folds were looked at to 

gauge the rate of improvement as the number of randomized k-folds added to the median 

increased. 

 

RESULTS AND DISCUSSION 

 

For sablefish, the original run order and five other randomized order additions of 20 

complete k-fold models are shown in Figure 9.2. In the original run order, the 12th model 

addition had the best stats. The median over those 12 complete k-fold neural net models versus 

the TMA is shown in Figure 9.3. The root mean square error (RMSE) was 3.527 years and the 

sum of absolute differences (SAD) was 2,789. 

For the relatively short-lived Pacific hake, the original run order and five other 

randomized order additions of 20 complete k-fold models are shown in Figure 9.4. In the original 

run order, the 20th model addition had the best stats. The median over those 20 complete k-fold 

neural net models versus the TMA is shown in Figure 9.5. The RMSE was 0.773 years and the 

SAD was 882. 
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In the Figures 9.3 and 9.5, note that the SAD equals the sum of the correctly matched 

otoliths (zeros, in red), plus 1 for each estimated age off by one year from the TMA (yellow), 

plus 2 for each estimated age off by two years (green) from the TMA, and so on. The SAD is 

well suited to rounded age data and works well to compare runs within a dataset. Note that 

standardized SAD and RMSE are closely correlated, as seen in Figures 9.2 and 9.4. 

In the future not only will medians be calculated, but also corresponding lower (0.025) 

and upper (0.975) quantiles based on the 20 random replicates will be calculated, reported, and 

plotted as error bars in a credible interval type figure. The quantiles will reflect the NN models 

precision based on the 20 random replicates, not the accuracy to a TMA age. 
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Figure 9.1. -- Raw spectra of 2019 Pacific hake (Merluccius productus) otoliths scanned on a Bruker MPA spectrometer. The x-axis 
represents wavenumber and the y-axis represents absorbance.
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Figure 9.2. -- Randomized additions of 20 complete k-fold models for sablefish (Anoplopoma 
fimbria). Correlation values are shown in black, r2 values are shown in red, the 
standardized root mean square error values are shown in green, and the 
standardized sum of absolute differences is shown in purple. In the original run 
order, the 12th model addition had the best statistics.
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Figure 9.3. -- Median over the first 12 complete k-fold models for sablefish (Anoplopoma fimbria) in the original order. Using the first 
12 models gave the best statistics (see Figure 9.2).
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Figure 9.4. -- Randomized additions of 20 complete k-fold models for Pacific hake (Mercluccius 
productus). Correlation values are shown in black, r2 values are shown in red, the 
standardized root mean square error values are shown in green, and the 
standardized sum of absolute differences is shown in purple. In the original run 
order, the 20th model addition had the best statistics.
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Figure 9.5. -- Median over all 20 complete k-fold models for Pacific hake (Mercluccius productus) in the original order. Using all 20 
models gave the best statistics (see Figure 9.4).
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INTRODUCTION 

 

 Changing environmental conditions necessitate adaptive management strategies that 

require timely and comprehensive collection of life history information to be effective (Holsman 

et al. 2019, Shotwell et al. 2022). Despite links with population productivity and recruitment, 

information on daily age, body condition, and reproductive biology is often limited in scope or 

inconsistently incorporated into management because data collection is laborious. The 

discrepancy between data requirements and collection limitations justify the exploration of new 

technologies to increase timely availability of data. Fourier transform near infrared (FT-NIR) 

spectroscopy and Raman spectroscopy are commonly used for food quality (Herrero 2008, 

Ferreira et al. 2013) and medical applications (Choo‐Smith et al. 2002) to measure properties 

linked with molecular composition including lipid content and purity, but are rarely used for 

ecological or fisheries applications despite similarities in data needs. 

Utilizing spectroscopy approaches to collect data for fisheries management applications 

requires the successful development of calibration models for key biological indices. Calibration 

models correlate spectra from targeted tissues or hard parts with known or well-quantified 

reference data such as age, body condition, or reproductive status. Prior to implementation, the 

predictive skill of calibration models must be tested using samples that were not included in the 

calibration. Furthermore, comprehensive calibration models for life history metrics require 

reference data that encompass ontogenetic shifts and energy allocation throughout ontogeny 

(Martin et al. 2017) to capture the entire data domain.  

This work focused on two commercially and ecologically important fish species, walleye 

pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus), to test applications of 
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FT-NIR and Raman spectroscopy approaches for biological data collection. Walleye pollock and 

Pacific cod both responded negatively to a recent marine heatwave in the Gulf of Alaska (GOA) 

due to increased energetic demands in warmer waters (Barbeaux et al. 2020, Rogers et al. 2021), 

highlighting the need for rapid and comprehensive data collection to monitor their populations in 

a changing environment. We selected key energetic, life history, and demographic characteristics 

that are time-consuming to collect using traditional approaches: daily and annual age, body 

condition, and reproductive maturity. We reared fish at the National Oceanic and Atmospheric 

Administration (NOAA), Alaska Fisheries Science Center’s (AFSC’s) Little Port Walter 

Research Station (LPW) starting from the first year of life over the course of several years to 

facilitate flexible and frequent sampling throughout ontogeny. We also obtained wild-caught 

specimens from the GOA to test and refine our calibration models. These comprehensive 

reference datasets will provide foundational information for the development of operational 

calibration models to assess life history parameters associated with two commercially important 

Alaska species and a framework for expanding spectroscopy applications to other taxa and 

ecosystems. 

 

METHODS 

 

Age-0 fish were collected in the summers of 2020-2022 in southeast Alaska and reared at 

LPW (Fig. 10.1) in indoor large round ponds and outdoor net pens under ambient conditions to 

emulate the natural environment. Data collection is ongoing, but sampling followed a 

longitudinal project design. Sampling frequency was weekly for young fish and reduced to 

biweekly or monthly as fish increased in age. Fish were sacrificed by submersion in tricaine 
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methanesulfonate (MS222), weighed (g), and measured (fork length, mm). Target biological 

tissues for reference data and spectroscopy scans were collected and preserved for later 

processing (Table 10.1). Additional wild-caught samples for model testing were obtained 

opportunistically from field surveys in the GOA conducted by NOAA AFSC’s Resource 

Assessment and Conservation Engineering Division and Auke Bay Laboratory (Fig. 10.1).  

Reference materials were scanned using a Bruker TANGO R or MPA II FT-NIR 

spectrometer (Bruker Optics, Ettlingen, Germany) with diffuse reflectance and an integrating 

sphere with a reciprocal wavelength range from 11,500 and 4,000 cm-1 to obtain FT-NIR spectral 

data. Raman data were collected with a MarqMetrix All-In-One high-performance Raman 

spectrometer with 785 nm wavelength excitation and a 12.7 mm diameter sapphire probe. 

Sample presentation differed among material types and included a modified aperture for FT-NIR 

scans of small otoliths (Matta et al. this volume-b) and a quartz vial configuration suitable for 

plasma and tissue samples (Fig. 10.2; Goldstein et al. 2021). 

 

RESULTS AND DISCUSSION 

 

 Three cohorts of walleye pollock and two cohorts of Pacific cod were reared at LPW. 

Growth trajectories were similar among the three reared cohorts, but sizes of wild specimens 

from the same annual cohort differed regionally and differed from growth trajectories of reared 

fish (Fig. 10.3). Such differences may be attributed to hatch dates or environmental conditions 

but highlight the need to test calibration models built with reared fish against diverse specimen 

sources. 
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 Spectra and reference data have been collected from a subset of samples, and preliminary 

analyses indicate notable differences in tissue spectral patterns and tissue-specific protocols for 

data acquisition. Spectroscopy data acquisition from blood plasma was limited by the volume 

available from an individual fish. This prohibited Raman data collection for some specimens by 

limiting submersion of the probe. Plasma volume was less of a constraint for the sample window 

configuration of the FT-NIR spectrometer (Fig. 10.2). Collection of reference data is still being 

conducted, but FT-NIR spectral data from female pollock plasma indicate spectral separation 

among fish of different body sizes (Fig. 10.4), suggesting value in pursuing hormone analyses, 

since body size of juvenile fish is inherently linked with growth and development. 

Preliminary exploration of FT-NIR scans focusing on body condition from liver and 

muscle showed variation in spectral patterns among tissue types. Spectra were more complex 

(i.e., peaks and valleys were evident) for liver than for muscle, suggesting greater material 

complexity (Fig. 10.5). Variability in liver spectra also coincided with informative wavenumber 

regions for determining lipid content from homogenized Pacific cod tissues (Goldstein et al. 

2021), suggesting that liver may be an appropriate tissue for building calibration models for body 

condition. FT-NIR absorbance spectra from liver and muscle showed only weak visual patterns 

related to Fulton’s K, a coarse condition index based on length and weight relationships 

(Wuenschel et al. 2018; Fig.10.5). Correlations between Fulton’s K and focal biochemical 

analyses are positive but weak for juvenile Pacific cod (Goldstein et al. 2021), suggesting that 

decoupling between Fulton’s K and spectra does not necessarily negate potential correlations 

between spectra and energy density or lipid content. Additionally, comparisons of FT-NIR 

triplicate liver scans from different regions of the same liver suggested that for some specimens, 

there was greater variability among liver scan regions within individuals than among specimens. 
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This finding suggests that repeated scans or homogenization may be necessary to obtain 

representative liver scans (Fig. 10.6). 

Most of the work to date has focused on reproduction and age, which have both yielded 

promising calibration model results. Daily age and otolith FT-NIR spectroscopy results are 

presented in Matta et al. (this volume-b). Raman results from ovary scans and histological 

reference data that used a subset of fish reared at LPW indicate Raman could be used 

successfully to differentiate among various ovary maturity stages (Neidetcher et al. this volume).  

Preliminary analyses for the suite of metrics examined here reinforce important 

considerations for calibration model development of fish life history indices. Variation in scans 

and spectral data repeatability indicate the importance of standardizing and optimizing material 

preparation and presentation. Variation in body size among reared fish and their free-ranging 

counterparts emphasizes the importance of curating comprehensive calibration and test datasets 

prior to model implementation. Following these considerations, finalized and vetted calibration 

models will likely provide new routes to incorporate, develop, and update indices for ecosystem-

based management and stock assessment.  
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Table 10.1. -- Description of data types and biological tissue collections from reared walleye 
pollock (Gadus chalcogrammus) and Pacific cod (G. macrocephalus). R denotes 
that Raman spectra were obtained for the scan material and F refers to Fourier 
transform near infrared spectral data collection. 

 

Life history metric Reference and 
spectroscopy 
scan material 

Reference data collection  Preservation  

Maturity: ovary ovary (R, F) Structures from histological slides formalin 
Maturity: hormones blood plasma 

(R, F) 
Enzyme-linked immunosorbent assay 
(ELISA) from plasma extracted from 
blood  

frozen 

Age: daily otolith (F) 
 

Otolith microstructure analysis dry 

Age: annual otolith (F) Otolith analysis dry 
Body condition: liver liver (R, F) Proximate composition analysis for 

percent composition of lipid, protein, and 
water 

frozen 

Body condition: 
muscle 

muscle (R, F) Bomb calorimetry for energy density frozen 
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Figure 10.1. -- Location of Little Port Walter Research Station (LPW) and catch locations for a 
subset of wild-caught walleye pollock (Gadus chalcogrammus) and Pacific cod 
(G. macrocephalus) specimens from 2019-2022 for comparison with fish reared 
at LPW. The vertical dotted line represents the designation of eastern Gulf of 
Alaska (GOA) compared to central and western GOA for this study.  
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Figure 10.2. -- Soft tissue (ovary, muscle, liver) and plasma sample presentation for (a) FT-NIR 
spectroscopy and (b) Raman data acquisition. Photo credit: Delsa Anderl, AFSC 
(retired). 
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Figure 10.3. -- Growth trajectories and sampling dates of (a) walleye pollock Gadus chalcogrammus and (b) Pacific cod G. 

macrocephalus cohorts reared at Little Port Walter Research Station (LPW) and wild-caught fish that have been 
collected in the eastern Gulf of Alaska (EGOA) and the central (CGOA) and western GOA (WGOA; see Fig. 10.1). 
Wild-caught specimens were aged annually and correspond with annual cohorts that are being reared at LPW. 
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Figure 10.4. -- Spectra from Fourier transform near infrared spectrometer (FT-NIRS) scans of 
plasma from female walleye pollock (Gadus chalcogrammus) from a subset of 
fish. Color scale is fish fork length, since reference hormone data collection is in 
progress. Data were pre-processed with a first derivative Savitzky-Golay filter 
(polynomial order = 2, window size = 15). 
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Figure 10.5. -- Fourier transform near infrared spectra (FT-NIRS) from (a, b) liver, and (c, d) 
muscle scans from reared walleye pollock (Gadus chalcogrammus) and Pacific 
cod (G. macrocephalus). Color scale is Fulton’s condition index (Fulton’s K; 100 
* length/weight3) as a coarse metric of body condition in the absence of reference 
biochemical data for the preliminary analyses. Note that the color scale changes 
for each panel, and some specimens differ between liver and muscle scans due to 
limitations in liver size that constrained FT-NIRS data collection. Data were pre-
processed with a first derivative Savitzky-Golay filter (polynomial order = 2, 
window size = 19). 
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Figure 10.6. -- Triplicate Fourier transform near infrared spectral scans of liver tissue from five 
individual walleye pollock (Gadus chalcogrammus) specimens (panels) taken 
from the anterior, middle, and posterior regions of the liver. Data were pre-
processed with a first derivative Savitzky-Golay filter (polynomial order = 7, 
window size = 19) and subsequently with Standard Normal Variate pre-
processing in an effort to correct for any additional issues that may create 
differences in spectra among specimens, such as light scatter (Fearn 2008). 
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INTRODUCTION 

 

 Estimates of daily age can provide valuable insight and context for understanding early 

life history and recruitment dynamics of marine fishes. Specifically, daily ages may be used to 

determine the phenology of hatching and spawning and to estimate growth, which in turn can 

influence mortality and overwinter survival and ultimately, the recruitment success of a 

population (Rogers and Dougherty 2019, Yoklavich and Bailey 1990). However, obtaining daily 

age estimates is laborious, destructive, and requires specialized equipment and expertise in 

growth pattern interpretation, limiting its feasibility in terms of broader, production-scale 

applications. One innovative method that has shown promise to rapidly and non-destructively 

produce estimates of daily age and growth in juvenile fish is Fourier transform near infrared (FT-

NIR) spectroscopy. A recent study on young-of-year (age-0) red snapper (Lutjanus 

campechanus) used FT-NIR spectroscopy to successfully predict fish age within 6 days of 

traditional, microscopic age estimates, with both methods resulting in comparable estimates of 

growth (Passerotti et al. 2020a). Here, we applied a similar approach to predict daily ages of 

juvenile walleye pollock (Gadus chalcogrammus), a commercially important species in Alaska 

waters. 

 

METHODS 

 

 Young-of-year walleye pollock were caught in summer and fall 2020 and raised at 

NOAA’s Little Port Walter Research Station in Southeast Alaska. Fish were sacrificed 

sequentially as a part of a larger longitudinal study to evaluate changes in growth and 
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development from the juvenile stage through maturation. Sampling was conducted at short 

intervals (weekly) at the beginning of the study and longer intervals (biweekly to monthly) 

thereafter. 

 A subset of young-of-year otoliths was aged using traditional, microscopic examination. 

Only fish sacrificed prior to October 1 were aged, due to compression in the daily rings that 

typically occurs near the otolith edge in fall as growth starts to slow, which can complicate 

pattern interpretation. Otoliths were thin-sectioned to a thickness of about 10 microns and read at 

least twice by two different analysts at 400-1000X magnification. Ages estimated 

microscopically were used to derive the median date of hatching for the 2020 cohort. This hatch 

date was applied to the remaining unaged fish to determine estimates of daily age. Only otoliths 

that had a Chang’s coefficient of variation (CV; Chang 1982) less than 10% (Jones 2013, 

Passerotti et al. 2020a) were retained to predict the median hatch date for the rest of the sample. 

 All otoliths were scanned on a Bruker MPA-II FT-NIR spectrometer to produce a 

spectrogram for each otolith (Fig. 11.1). Due to the small size of the otoliths, we tested several 

different aperture and stamp combinations to optimize the signal-to-noise ratio (Passerotti et al. 

2020a) of spectra from small otoliths in a related species, Pacific cod (Gadus macrocephalus). 

The best results in terms of predicting fish length from otolith spectra were obtained using 

Teflon discs with drilled 2-mm and 5-mm diameter apertures and a gold-coated reflector stamp 

covering the otolith. We opted for a 5-mm aperture diameter to accommodate the largest otoliths 

in our sample (Fig. 11.2). 

 Otolith spectral data were split randomly into 75% train and 25% test data sets and used 

to build partial least squares regression (PLS) predictive models between spectral data and fish 

daily age. Spectral regions dominated by noise were excluded (>7500 cm-1) and data were 
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preprocessed using a first derivative Savitzky-Golay filter (17-point smooth, polynomial order = 

3) (Fig. 11.1). An initial calibration model was constructed, including all the wavenumbers 

>7500 cm-1. Wavenumber variables for inclusion in the final model were then selected using a 

combination of variable importance in projection (VIP) and jack-knifed coefficient p-values (α = 

0.05) (Farrés et al. 2015). 

 

RESULTS AND DISCUSSION 

 

 In total, we aged 58 otoliths using traditional methods. The overall precision (% CV) of 

age estimates was 7.92%. Acceptable levels of precision (<10% CV) were achieved for 36 of the 

otoliths; these otoliths were used to estimate the hatch date distribution of the sample. Estimated 

hatch dates ranged from April 16 to May 31, with a median date of May 2. 

 Preliminary results demonstrated satisfactory predictive capability of PLS models 

between otolith spectra and daily ages (Fig. 11.3). The root mean square error (RMSE) and r2 of 

the cross validation (leave-one-out) data set were 9.34 days and 0.93, respectively. The RMSE 

and r2 of the test data set were 12.09 days and 0.87, respectively. The percent RMSE, a measure 

that can be used to compare the error relative to the maximum observed age in a study, was very 

low at 4.02%, and comparable to results for juvenile red snapper and adult walleye pollock 

(Helser et al. 2019b; Passerotti et al. 2020a). 

 Ultimately, FT-NIR spectroscopy appears to be an effective method of estimating daily 

ages of juvenile walleye pollock. Future work will focus on increasing sample size, refining 

hatch date estimates of unaged fish, and incorporation of data from wild-caught fish and other 
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cohorts to test the model’s ability to predict ages of fish from different areas, years, and over a 

wider range of ages. 

  



147 
 

 

 
Figure 11.1. -- Raw (top) and preprocessed (bottom) spectrograms of age-0 walleye pollock 

(Gadus chalcogrammus) otoliths. 
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Figure 11.2. -- Accessories used to scan otoliths from age-0 walleye pollock (Gadus 
chalcogrammus). Left: Teflon disc with a drilled 5-mm diameter aperture to 
improve the signal-to-noise ratio. Right: Gold reflector stamp used to cover the 
otoliths. 
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Figure 11.3. -- Partial least squares regression showing relationship between human-estimated 
age and model-predicted age of age-0 walleye pollock (Gadus chalcogrammus). 
Black symbols indicate cross-validation dataset and pink symbols indicate test 
dataset. Closed circles represent fish with ages that were estimated using 
traditional microscopic methods; open circles represent fish with ages based on 
the median hatch date of the sample and time of sacrifice. 
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INTRODUCTION 

 

 Near infrared (NIR) spectroscopy of otoliths for age determination and species 

classification in fish such as Pacific cod (Gadus macrocephalus), red snapper (Lutjanus 

campechanus), walleye pollock (G. chalcogrammus) and saddletail snapper (L. malabaricus) 

occurs post-mortem (Helser et al. 2019b, Benson et al. 2020). In other post-mortem studies, NIR 

spectroscopy has been used to assess the quality and nutritional composition of fish filets, 

classify fresh or frozen tissue, and predict microbial contamination or adulteration of market 

products such as fish meal (Liu et al. 2013). NIR spectroscopy has not been used to examine 

physiology and health of living fish for pre-harvest management decisions, as the prospect of 

using NIR spectroscopy for aquatic species in vivo is often dismissed due to fears of water signal 

interference. Yet, we have successfully used NIR spectroscopy to address physiology and health 

questions in live amphibians, terrestrial and aquatic, specifically for species discrimination, sex 

determination in monomorphic species or juvenile animals, reproductive status in female adults, 

and to detect subclinical levels of fungal disease (Vance et al. 2016a, Chen et al. 2022, Chen et 

al. 2023). Similar information may be obtainable for live fish in real time with NIR spectroscopy, 

particularly if coupled with machine learning algorithms. Here we develop methodology for NIR 

spectral collection of species-specific information from live catfish as a proof of principle in NIR 

spectroscopy for in vivo physiological assessment. 

To examine if biochemical information for physiological traits of interest could be 

collected from live fish, we analyzed the discriminatory capacity of NIR spectroscopy for species 

classification of adult blue catfish (Ictalurus furcatus) and channel catfish (Ictalurus punctatus) 

catfish with intent to transfer the model predictions to discriminate fingerling fish for 
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aquaculture. We needed to develop a method for collecting NIR spectra from live adult catfish 

that could give us physiological information despite the presence of a thick mucus layer on the 

skin and handling in an aquatic environment. To this end, we first compared the NIR spectra 

prediction results for catfish that were or were not anesthetized with tricaine methanesulfonate 

(MS-222) to see if spectra from calm fish were more informative than those of stressed fish, and 

if there was a masking effect of the MS-222 anesthetic in the NIR spectrum. Second, we 

compared the spectral collection method for three important regions of the live fish. Spectra from 

the head could contribute to species differentiation, sexual dimorphism at breeding, and 

infectious disease such as Edwardsiella ictaluri bacterium, which causes enteric septicaemia. 

Spectra from the lateral line may also differentiate species, sexual maturity, and channel catfish 

virus disease, which is a disease with 100% mortality in fingerlings. Spectra from the vent may 

provide information on species, sexual maturity, and even translate to measuring gamete 

development. Finally, we tested six model algorithms (PCA-LDA, GLMnet, KMM, RF, 

XGBoost, and SVM) to see if predictive capacity for our trait of interest was dependent on the 

modeling approach. 

 

METHODS 

 

 Adult blue and channel catfish (n = 20 per species) were grown in the aquaculture facility 

at Mississippi State University. Near infrared spectra were collected from fish that were not 

anesthetized and then again when they were anesthetized with MS-222. NIR spectra were 

collected from the head, lateral line, and vent (three spectra per site), using a portable ADS 

FieldSpec 3 + Indigo-Pro w/fiber optic source and a low-intensity contact probe with a diameter 
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quartz window (Fig. 12.1A). Each spectrum was collected over the range 350-2500 nm and was 

an average of 100 scans with a 34 μs integration time, totaling about 12 seconds of direct contact 

with the live fish. Spectra were then transformed with SNV + detrend and 1st derivative (GAP 

25; segment 19), and SG smoothing (order 1, 12 symmetric kernel points) (Fig. 12.1B). Spectra 

from 32 fish (16/species) were used to generate the calibration and internal validation sets (5-fold 

cross-validation) and spectra from the remaining 8 fish (4/species) were the external validation 

set in the discriminative models for each collection site. 

Six conventional machine learning modeling algorithms for discrimination of species 

were examined and compared using Tukey’s honestly significant difference test (p < 0.05) and 

analysis of variance: 1) principal component analysis-linear discriminant analysis (PCA-LDA), 

which is a combined unsupervised-supervised dimensionality-reducing technique for 

discriminating observations amongst discrete classes, 2) generalized linear model with elastic net 

regression (GLMnet), which is a supervised linear regression method, 3) k-nearest neighbors 

(KNN), a supervised machine learning algorithm that predicts the class of an observation based 

on the majority-class of k-nearest neighbors, found best for fish species, 4) random forest (RF) 

search, a supervised algorithm that applies an ensemble approach when placing predictions based 

on repetitive splitting of features (branches) at random to split nodes into decision trees, 5) 

extreme gradient boosting (XGBoost), a supervised algorithm that employs an ensemble of trees 

for prediction, and 6) support vector machine (SVM), which is a linear supervised algorithm that 

plots all observations on a hyperplane comprised of all predictor features (Chen et al. 2023). 
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RESULTS 

 

 Classification of species using NIR spectroscopy across all six algorithms provided 

informative models with 77.3-97.5% accuracy (Table 12.1). Species discrimination was obtained 

with NIR spectra collected from the head, lateral line, and vent region of catfish with external 

validation average predictions for anesthetized fish with >90% accuracy, and for non-

anaesthetized fish between 75% and 90% accuracy for all algorithms tested. Models built with 

spectra from anesthetized fish exhibited improved species classification in the head and vent 

regions, and MS-222 did not appear to interfere with species distinguishing biochemistry (Table 

12.1). Species classification did not significantly differ by scanning region, although spectra 

from the lateral line were more informative than spectra from the head or vent regions in non-

anesthetized fish, while head and vent spectra were most informative in anesthetized fish. The 

use of anesthesia may lead to decreased stress response and reduce noise, allowing for increased 

signal detection for predicting species designation, yet alternative means to collect spectra 

without stress may provide more rapid data collection and yield similar results. 

 

CONCLUSIONS 

 

 Catfish species can be classified via NIR spectroscopy collected from the epidermis of 

living individuals with water and mucus layers. Spectral collection is improved when animals are 

calm or when collecting spectra from easily accessible regions (lateral line and head vs. vent), 

although developing alternatives to administering anesthesia would benefit field studies. 

Furthermore, spectral collection from different regions contributes information on different 
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physiologically based traits such as disease and reproduction, and all regions provide 

discriminatory information that can be tailored to the trait of interest. Finally, use of a 

computationally simple model (e.g., PCA-LDA) can provide sufficient information for basic 

physiological analysis in live fish, despite the presence of water.  

Fingerlings from different catfish species have significant differences in not only the 

metabolic processes that affect their growth rates, nutrient composition, and marketability, but 

also in disease susceptibility and transmission. Currently, channel, hybrid, and blue fingerlings 

can only be discriminated through polymerase chain reaction amplification of genetic material as 

no distinguishing visual characteristics are evident in their physiology. Similar to our work in 

amphibians, NIR spectroscopy may also be able to detect pathogenic disease presence and load 

at early stages to enable isolation or treatment prior to spread or population outbreak, which can 

wipe out an entire crop. NIR spectroscopy could provide a spectral fingerprint based on the 

biochemistry of each species in real time, allowing investment decisions without termination. 
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Table 12.1. -- Discrimination of live channel and blue catfish by near infrared spectroscopy, with 
aggregated accuracies from five repeats of 5-fold cross validation from the external 
dataset of 8 fish left out of the prediction models. 

 

  No Anesthesia Anesthesia 

 Model Head Lateral Line Vent Head Lateral Line Vent 

Random Forest 80.3 ± 11.7% 84.4 ± 13.5% 81.0 ± 9.2% 94.2 ± 7.7% 90.0 ± 7.7% 95.8 ± 2.6% 
XGBoost 78.9 ± 10.2% 84.5 ± 13.7% 83.6 ± 8.5% 94.2 ± 5.7% 93.9 ± 9.4% 96.7 ± 3.1% 
GLMnet 78.0 ± 10.7% 82.1 ± 11.7% 81.5 ± 13.4% 97.5 ± 5.0% 95.8 ± 6.5% 97.5 ± 2.0% 

SVM 81.7 ± 11.6% 87.8 ± 15.5% 79.3 ± 60.8% 97.5 ± 5.0% 95.0 ± 4.1% 95.8 ± 4.6% 
LDA 78.3 ± 11.6% 77.2 ± 15.5% 78.1 ± 10.8% 95.0 ± 4.9% 93.3 ± 5.7% 95.8 ± 4.6% 
KNN 77.3 ± 10.9% 83.3 ± 8.6% 73.7 ± 8.3% 95.8 ± 6.5% 92.5 ± 7.2% 95.0 ± 4.1% 
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Figure 12.1. -- Average raw and processed spectra collected from two species of live catfish (n = 
20 fish /species) at three positions on the body. Aquaphotomics performed at the 
water signal highlighted by the blue box in the transformed spectra has potential 
for additional classification power. 
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INTRODUCTION 

 

Etelis carbunculus Cuvier (Cuvier and Valenciennes 1828) is an important component of 

the bottomfish management unit species (BMUS) fisheries in the Pacific Territories of the 

United States (Langseth et al. 2019). There has long been speculation about whether E. 

carbunculus actually comprises two species due to its extensively wide range from Seychelles 

(western Indian Ocean) to Hawai’i, and geographic variation in certain morphological characters, 

such as maximum body size and otolith growth and morphology (Anderson 1981, Smith and 

Kostlan 1991, Wakefield et al. 2014, Williams et al. 2015). Historically, E. carbunculus was 

divided into E. carbunculus (Seychelles holotype 1828) and E. marshi (Hawaii holotype), but E. 

marshi was later designated as a junior synonym (i.e., a previously published name) of E. 

carbunculus, and not a unique species (Anderson 1981). Later, phenotypic differences in otolith 

morphology of E. carbunculus reported from different regions ignited a new debate around the 

possibility of a cryptic species pair (Smith and Kostlan 1991, Smith 1992). Recent genetic and 

morphological studies have provided conclusive evidence that Etelis carbunculus comprises two 

cryptic species, E. carbunculus, the pygmy ruby snapper, and E. boweni, the newly described 

giant ruby snapper (Loeun et al. 2014, Andrews et al. 2016, 2021). Although exceptionally 

similar in their morphology, the two species differ in coloration of the dorsal caudal fin tip and 

the shape of the opercular spine (Andrews et al. 2016).  

Now that taxonomic revision of the species complex has been verified, life history 

research has revealed fundamental differences in the biology between E. carbunculus and E. 

boweni, including maximum body size, growth rate, and length at age (Williams et al. 2017, 

Wakefield et al. 2020). Due to their overlapping distributions across the Indo-Pacific, both 
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species have been previously misreported as a single species (E. carbunculus) in fisheries catch 

data and in biological studies (Williams et al. 2013, Wakefield et al. 2020). This complicates life 

history research, because the otolith collections that were thought to be solely E. carbunculus are 

now known to be contaminated with an unknown number of E. boweni otoliths. Collections of 

biological samples on these species for which misidentification is a potential issue go back 

decades, and fisheries age-structured assessments that incorporate life history data from the 

cryptic species alongside E. carbunculus may suffer from model misspecification. This is also 

true for data poor assessment approaches that rely heavily on otolith-derived growth estimates. 

Given the inherent vulnerability of Eteline snappers to overexploitation (Williams et al. 2013), it 

is imperative that methods be developed to recognize speciation within archived otolith 

collections to move forward with sustainable management. 

Fourier transform near infrared (FT-NIR) spectroscopy is an emerging technology in 

fisheries and conservation biology (Wedding et al. 2014, Vance et al. 2016b, Helser et al. 2019b) 

which may offer an alternative to both morphometric and shape analyses. The technique relies on 

light from the near infrared region (12,800-4,000 cm-1 wavenumbers) of the electromagnetic 

spectrum and absorbance patterns that reflect a sample’s organic chemical composition. These 

spectra can then be compared among samples using multivariate statistical analysis to 

discriminate known variables (e.g., age, stock, or species) of interest (Murray and Williams 

1987). FT-NIR spectroscopy has recently gained attention with its ability to predict fish age from 

otoliths (Wedding et al. 2014, Helser et al. 2019a, 2019b, Passerotti et al. 2020b), as well as the 

potential to discriminate geographical differences expressed in otolith chemistry (Wedding et al. 

2014, Benson et al. 2020). FT-NIR spectroscopy, if effective in distinguishing cryptic Etelis 

species, would provide a time efficient alternative to manual morphometrics using calipers or 
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image analysis, especially of species with fragile otoliths prone to breaking, and could be used to 

differentiate future cryptic species from archived collections. Furthermore, because FT-NIR 

spectroscopy scanning does not damage the sample (i.e., otoliths are scanned whole), otoliths 

may later be used for fish ageing following spectral scans and the determination of species. 

Herein, we examine the utility of FT-NIR spectroscopy to distinguish between archived 

otoliths of cryptic species E. carbunculus and E. boweni. We assessed the efficacy of FT-NIR 

spectroscopy using voucher otoliths from the Southwest (SW) Pacific Ocean that were 

previously identified to species using phenotypic and genetic differences. Following calibration 

and validation of voucher (i.e., known) data, we applied optimal models to predict and classify 

archived Etelis sp. otoliths previously collected around Guam. 

 

METHODS 

 

Samples 

 

Voucher otoliths from E. carbunculus and E. boweni were located at the Pacific 

Community Marine Specimen Bank archive based in New Caledonia (Smith et al. 2017) (Fig. 

13.1). Fish were collected between July 2012 and April 2014 from research surveys and 

commercial fishers from seamounts and island reef slopes in the Exclusive Economic Zones 

(EEZs) of New Caledonia, Fiji, Tonga, and Vanuatu (range: -15.1°-24.4°S, 164.9°E-174.3°W) in 

the SW Pacific Ocean. Samples (n = 93) were chosen by fork length (FL) to capture the full size 

range of each species, as well as to maximize the overlap in their size distributions. Samples 

were selected to also minimize spatial variability, selecting samples as evenly from as few 
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regions as possible (i.e., similar numbers of each species for each EEZ). Voucher Etelis samples 

were distinguished phenotypically at the time of capture based on the presence (E. boweni) or 

absence (E. carbunculus) of a black margin on the upper lobe of the caudal fin and a rounded (E. 

boweni) or acutely sharp (E. carbunculus) opercular spine (Andrews et al. 2016). Fork length 

was measured to the nearest 1 mm, wet weight was recorded to the nearest 0.1 g, and the sagittal 

otoliths were removed, rinsed, and stored dry. 

Presumed E. carbunculus otoliths were collected from the waters around Guam (13.4°N, 

144.7°E) at the Guam Fishermen’s Cooperative from 2009-2019 (n = 91) and were archived at 

the Pacific Islands Fisheries Science Center in Honolulu, Hawai’i. Currently, these samples 

comprise a potentially mixed collection of cryptic species, E. carbunculus and E. boweni. As 

above, fork length was measured to the nearest 1 mm, wet weight was recorded to the nearest 0.1 

g, and the sagittal otoliths were removed, rinsed, and stored dry. 

 

Spectral Measurements and Pre-processing  

 

All otoliths were scanned using diffuse reflectance on a Bruker Multi Purpose Analyzer 

II Fourier transform near infrared spectrometer with a 22-mm diameter sample window and 

OPUS software (version 7.8; Bruker Scientific, Billerica, MA). The spectrum acquisition was 

performed from 10,000 cm-1 to 4,000 cm-1 (64 scans, resolution 16 cm-1). Scans were averaged to 

produce a single representative spectrum for each sample. 

Following acquisition, spectral data were uploaded into Solo 8.9.2 (2021), a chemometric 

software that uses a MatLab framework (Eigenvector Research Inc., Manson, WA) for data 

processing and model generation. Selected spectral regions were in the 7,500 to 4,000 cm-1 
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range. Raw spectra were plotted to detect any spectral outliers in need of rescanning. Spectral 

data were pre-processed with 13-point Savitzky-Golay smoothing (2nd order polynomial), 13-

point Savitzky-Golay first derivative transformation, and mean-centering, which produced the 

best separation among groups. 

 

Principal Component Analysis 

 
 Exploratory data analysis based on principal component analysis (PCA) was performed 

to visualize trends in the voucher data and to evaluate the discriminatory possibility of the FT-

NIR spectra between species. The Guam Etelis sp. samples were also explored using PCA, with 

samples ≥60 cm FL assigned to E. boweni based on known disparities in maximum size between 

species (Andrews et al. 2016). PCA on the pre-processed data matrix was obtained using two or 

three principal components, and cross-validation was performed using venetian blinds with ten 

splits and algorithm-SVD (singular value decomposition). Species groups were visualized using 

a scores plot. Hotelling’s T2 and Q residuals were inspected to detect any spectral outliers in 

need of rescanning. 

 

Multivariate Classification  

 

Partial least squares discriminant analysis (PLS-DA) was used to evaluate spectral 

variability from voucher E. carbunculus and E. boweni based on a known class membership (i.e., 

species) of the samples. To obtain the discrimination model, each Etelis species was defined as a 

separate class. PLS-DA models on voucher data were calibrated and validated using two 

approaches. First, the entire dataset was used to calibrate a discrimination model, and cross-
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validation (CV) of the model was executed using 10 sub-validation sets of 8 samples each 

(venetian blinds cross-validation). For the second approach, the total sample set was partitioned 

into calibration, assembled from 70% of samples, and validation datasets, using the remaining 

30% of samples. The split was done randomly using the Kennard-Stone method (Kennard and 

Stone 1969). The calibration dataset was used to generate the classification model (venetian 

blinds CV), and the validation dataset was used to evaluate predictive (i.e., classification) 

performance after assigning class membership to one of the two species. 

In each case, automatic variable selection was used to find subsets of variables (i.e., 

wavenumber regions) that improve predictions (compared to all 949 variables). Goodness of fit 

for each model was based on the cross-validation (CV) error, r2 (coefficient of determination), 

RMSECV (root mean square error of cross validation), and specificity (true negative rate) and 

sensitivity (true positive rate) of the model. Class error was calculated for each model as the 

average of the false positive and false negative rates and was viewed as a confusion matrix.  

Lastly, PLS-DA models built on voucher samples were used to predict class (i.e., species) 

membership of the Guam Etelis sp. samples. The PLS-DA classification method builds a model 

on the calibration dataset (e.g., voucher) and, by default, assumes the two classes have equal 

prior probability, regardless of the relative number of samples of each class in the calibration 

dataset. However, if there is known information on the prior probability of each class in the 

population, it is possible to incorporate these priors into the model's classification so that the 

model would be more accurate for datasets randomly sampled from that population. The 

assumption that classes were evenly distributed in Guam samples was not met based on evidence 

of far more E. carbunculus (~80%) compared to E. boweni (~20%) in the dataset, thus prior 

probabilities of the PLS-DA model were modified using “priorprob”. Species predictions of 
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these samples were compared to quadratic discriminant analysis results from otolith 

morphometrics.  

 

RESULTS 

 

Despite outward similarities in phenotype, E. carbunculus reaches a much smaller 

maximum size compared to E. boweni. Fork length of voucher samples ranged from 25.0 to 58.0 

cm for E. carbunculus (n = 38) and from 29.0 to 85.0 cm for E. boweni (n = 45) (Pacific Islands 

Fisheries Science Center 2023) (Fig. 13.2, Table 13.1). Mean (±SE) FL was 42.26 (±1.49) cm for 

E. carbunculus and 53.47 (±2.43) cm for E. boweni (Fig. 13.2, Table 13.1). Out of all 83 voucher 

samples, only 22% (n = 18) had whole, unchipped otoliths for morphometric measurements. The 

remaining otoliths (n = 65) had material missing from the right otoliths due to chipped or 

completely broken rostrums. Fork length of Guam samples ranged from 18.1 to 89.0 cm (Fig. 

13.2, Table 13.1). Out of all 91 Guam samples, only 20% (n = 19) had otoliths pairs in whole 

condition for morphometric measurements (i.e., no rostrum breaks), whereas 24 samples had a 

whole right (n = 15) or left (n = 9) otolith. The remaining 48 samples (>50%) had material 

missing from both right and left otoliths from chips or breaks. 

 Spectral data showed distinct absorbance patterns (i.e., peaks and valleys at certain 

wavenumbers) based on the organic chemical composition of the otoliths (Fig. 13.3). Twelve 

samples in the voucher dataset and one sample in the Guam dataset were rescanned due to 

abnormally high peaks apparent in spectral absorbance, and the best spectra were selected for 

analysis. Distinct peaks among all spectra were observed at approximately 6,800 cm-1, 5,160   

cm-1, and 4,300 cm-1 (Fig. 13.3). When voucher spectral data was pre-processed, species 
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separation became apparent in several wavenumber regions, with the largest differences 

observed around 7,100 cm-1, 5,300 cm-1, 4,400 cm-1, and 4,000 cm-1 (Fig. 13.4). 

The PCA on voucher data included all 949 wavenumber regions as variables, and showed 

significant clustering between species (Fig. 13.5), thus demonstrating the possibility of 

classifying Etelis sp. samples based solely on differences in their chemical compositions that are 

visible in the NIR region. Most of the variation in the multivariate morphometric data (99.4%) 

was described by PC1 (96.96%) and PC2 (2.48%) (Fig. 13.5). The two species clusters were 

clearly separated along PC1 and PC2; however there was some overlap present. 

 A total of 46 E. boweni and 39 E. carbunculus voucher sample spectra were used to 

calibrate PLS-DA models. Variable selection for each model selected 480 (fully cross-validated) 

and 623 (test split) wavenumber regions (out of 949) as the most important for discrimination 

between spectra. The fully cross-validated PLS-DA model was computed with four latent 

variables (LVs) and performed nearly perfectly for species classification, with a class error rate 

of 2.4%. The model correctly classified 83 voucher samples into E. boweni (n = 45) and E. 

carbunculus (n = 38) classes (Fig. 13.6A). Only one sample of each species was misclassified in 

cross-validation (Table 13.2). Both specificity (0.974) and sensitivity (0.978) were very high.  

 Comparable results were observed when voucher samples were split into calibration 

(70%, n = 60) and external validation (30%, n = 25) datasets (Fig. 13.6B). Class error of the 

calibration CV (venetian blinds) was 5.0%, and only one E. boweni and two E. carbunculus were 

misclassified (Table 13.2). The PLS-DA model also performed very well for true predictions on 

the external validation dataset and correctly predicted the species class of 24 voucher samples 

without information on the true species. Only one E. carbunculus was misclassified as E. boweni 
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(Table 13.2, Fig. 13.6B). The class error for the validation set was slightly lower than the 

calibration at 4.0%.  

 The fully cross-validated model (lowest class error rate) was used to test predictions on 

the archived Guam Etelis sp. samples. Prior probabilities were modified so that the model would 

not assume an equal probability of observing either species, as E. boweni appear to be rare in 

Guam (an assumption which was corroborated by morphometric results herein). The model 

predicted that 8% (7 of 91) of archived otoliths belonged to the newly identified E. boweni. Two 

Guam samples over 60 cm FL (GECC-1133, GECC-1317) were classified as E. boweni from 

predictions made on voucher-calibrated PLS-DA model, which we assume to be a correct species 

assignment (Fig. 13.7). Three Guam samples over 60 cm FL (GECC-0318, GVDP-0370, and 

GVDP-0503) were classified as E. carbunculus which we assume to be false, based on maximum 

reported FL of the species (Fig. 13.7). However, sample GVDP-0370 stood out as an outlier in 

the overall plot of Hotelling’s T2 and Q residuals, so prediction on this sample is unresolved. 

Five additional Guam samples were classified as E. boweni: GECC-0069 (50.4 cm), GECC-0591 

(46.8 cm), GECC-0711 (39.9 cm), GECC-1494 (30.4 cm), and GVDP-0381 (35.7 cm) (Fig. 

13.7). 

 

DISCUSSION 

 

This study explored the use of FT-NIR spectroscopy as a potential new method to 

distinguish the cryptic species pair. Differentiation of the cryptic species pair Etelis carbunculus 

and Etelis boweni was shown to be possible and highly reliable through examination of archived 

otoliths. FT-NIR spectral absorbance patterns of archived voucher otoliths from the SW Pacific 
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were distinct between species. Classification models applied using NIR spectral data were able to 

predict species with a high degree of accuracy, despite a relatively large spatial area of voucher 

specimen collection (±10° latitude and longitude) and regardless of whether otoliths were whole 

(i.e., unbroken). In addition, FT-NIR spectroscopy identified members of the newly described E. 

boweni species in the archived collection of E. carbunculus otoliths captured around Guam, 

which confirmed that the species’ distributions overlap in this region. The identification of both 

E. carbunculus and E. boweni in the archived catch from Guam has important implications for 

fisheries management; therefore, it is imperative that the corresponding otolith collections are 

examined to ensure that the otoliths are assigned to the correct species. 

 FT-NIR spectroscopy was able to identify and separate the two cryptic Etelis species in 

this study with extremely high classification accuracy. Importantly, the model performed best 

when making predictions for voucher data, indicating spatial (or some other) variability existed 

within both Etelis species from these distant sampling locales. Further, while exploring the 

spectral data, we observed PCA clustering of fish based on region within voucher samples. Thus, 

FT-NIR spectroscopy may be a useful tool to also discriminate spatial differences (e.g., stock 

discrimination) in these species, and conceivably others. Robins et al. (2015) also reported 

evidence of spatial discrimination using this method. The best solution to avoid such geographic 

issues is to include samples from all locations in the calibration stage, in which case, the full 

scope of otolith microchemistry variation that may be encountered in the test dataset is captured 

by the model (Robins et al. 2015). Had our calibration models included some spectra from fish 

collected in Guam (for which species identification could be confirmed), it would have 

undoubtedly improved predictions. 
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Species predictions from best models suggested that archived otoliths from Guam belong 

primarily to E. carbunculus (92%: 84 of 91). Seven archived otoliths were predicted to belong to 

the newly identified E. boweni. There was a general lack of overlap in body sizes between the 

two Etelis species identified in Guam. Based on FT-NIR spectroscopy, samples classified as E. 

boweni included two of the largest individuals (>60 cm FL) and two smaller individuals (30.4 

and 35.7 cm FL). Given what we know about maximum body sizes in E. carbunculus (<60 cm 

FL), it appears more spectra from these populations of fish are needed to provide reliable 

predictions of these cryptic species. 

Predictive models for FT-NIR spectroscopy approaches are only as good as the 

calibration data provided to train models on. An important assumption of these analyses is that 

each voucher specimen was correctly identified to species. Voucher specimens were collected 

after recognition of the new cryptic species and the identification of the distinguishing external 

characteristics. However, the presence of the dark margin on the upper lobe of E. boweni caudal 

fin is not always easy to see and the ‘sharpness’ of the opercular spine is relative between the 

two species and not always obvious. While we are not calling into question the ability of the 

researchers to correctly identify the fish used in this study, the possibility of a misidentification 

cannot be discounted. 

In summary, differentiation of voucher Etelis carbunculus and Etelis boweni specimens 

was shown to be possible and highly reliable through examination of FT-NIR spectroscopy. 

Beyond this cryptic species pair, FT-NIR spectroscopy is likely to provide the same level of 

accuracy regardless of species and be applicable to archived otoliths when other cryptic species 

are identified subsequent to collection. Case-specific, otolith morphometrics (i.e., shape analysis) 

may be the preferred method to determine species classification if otolith length is not a 
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distinguishing feature between the two species, otolith rostrums are not susceptible to breaking 

during extraction and transportation, and the archived sample size is not overwhelming; 

conversely, FT-NIR spectroscopy may provide greater accuracy and time efficiency. 
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Table 13.1. -- Descriptive statistics for fish fork length, fish weight, and seven otolith morphometric variables for voucher Etelis 
carbunculus and Etelis boweni from the SW Pacific and for Etelis sp. from Guam. Sample sizes (n) differ by variable 
depending on whether whole (i.e., unbroken) otoliths (*) were used, or whether field data existed for the sample. 
Morphometric abbreviations are noted in parentheses. 

 

 SW Pacific voucher samples Guam samples 
 Etelis carbunculus  Etelis boweni  Etelis sp.  

Metrics Range Mean  SE n   Range Mean  SE n   Range Mean  SE n   
Fork length, cm 25.0-58.0 42.26 1.49 38   29.0-85.0 53.47 2.43 45  18.1-89.0 34.77 1.44 91  
Fish weight, kg 0.28-3.70 1.59 0.17 38   0.40-11.10 3.79 0.47 43  0.10-13.32 1.11 0.21 90  
Otolith length, mm (L) 10.6-14.4  11.80 0.48 8 * 11.6-17.4 15.35 0.67 10 * 7.7-20.6 10.89 0.38 43 * 
Otolith width, mm (W)  4.69-8.85 6.25 0.16 38   3.88-7.61 5.84 0.14 45  3.50-8.20 5.13 0.11 91  
Otolith thickness, mm (T) 1.17-2.65 1.78 0.06 38   0.99-2.16 1.37 0.04 45  0.88-3.04 1.33 0.04 91  

Otolith area, mm2 (A) 39.0-72.5 49.32 4.50 8 * 40.0-72.4 60.72 3.70 10 * 19.2-85.5 38.76 2.24 43 * 
Otolith perimeter, mm (P) 30.2-48.7 36.35 2.40 8 * 33.6-72.4 43.74 2.10 10 * 20.7-60.2 31.09 1.23 43 * 
Otolith sulcus groove width, mm (S) 0.78-1.28 1.04 0.02 38   0.59-1.17 0.85 0.02 45  0.58-1.39 0.90 0.02 91  
Otolith excisura major length, mm (E) 6.84-9.63 8.26 0.12 36   7.18-13.93 10.25 0.29 40   5.30-12.20 7.67 0.15 91   
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Table 13.2. -- Confusion tables for cross-validation and external validation of partial least 
squares discriminant analysis models on spectral data obtained via Fourier 
transform near infrared spectroscopy fit using voucher Etelis species samples from 
the SW Pacific. Values in bold are the number of correct species assignments 
based on known species of the voucher dataset.  

 

        Actual Class 
Data set Model n Predicted as E. boweni E. carbunculus 
Full cross-validation Calibration  85 E. boweni 45 1 
      E. carbunculus 1 38 
Split-Test Calibration 60 E. boweni 32 1 

     E. carbunculus 2 25 
 Validation 25 E. boweni 12 1 

      E. carbunculus 0 12 
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Figure 13.1. -- Proximal view of right sagittal otoliths from Etelis carbunculus (50 cm FL, left), 
and Etelis boweni (67 cm FL, right). Scale bar (in red) is 5 mm.  
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Figure 13.2. -- Length frequency distribution of voucher Etelis carbunculus (green, n = 39) and 
Etelis boweni (red, n = 46) specimens from the SW Pacific, and Etelis sp. (n = 91) 
previously collected from the Guam bottomfish fishery, which were assumed to 
be all E. carbunculus but are now known to be a mix of E. carbunculus and E. 
boweni. 
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Figure 13.3. -- Raw (top) and average (bottom) Fourier transform near infrared spectra (10,000-
4,000 cm-1) of voucher otoliths by Etelis species (n = 85). Absorbance is on the y-
axis for each plot. 
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Figure 13.4. -- Raw (top) and average (bottom) Fourier transform near infrared spectra (10,000-
4,000 cm-1) of voucher Etelis carbunculus (green) and Etelis boweni (red) otoliths 
by species (n = 85), pre-processed by 13-point Savitzky-Golay smoothing (2nd 
order polynomial), 13-point Savitzky-Golay first derivative transformation, and 
mean-centering. 
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Figure 13.5. -- Scores plot of PC1 and PC2 from principal component analysis of Fourier 
transform near infrared spectral data from voucher otolith samples colored by 
Etelis species.  
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Figure 13.6. -- Partial least squares discriminant analysis model validation results showing Etelis 
species classification predictions by calibration models built using voucher 
samples (n = 85). Models were developed and validated on, A) all data (full 
random cross-validation) or B) data split into calibration (70%) and validation 
(30%) datasets. For the bottom panel, samples 1-60 represent the calibration (i.e., 
training) dataset and samples 61-85 represent the validation dataset. For each plot, 
class 1 = true Etelis boweni and class 2 = true Etelis carbunculus.  
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Figure 13.7. -- Partial least squares discriminant analysis model testing results showing the 

model trained on voucher Fourier transform near infrared spectra used to predict 
the species of Guam Etelis sp. samples. For A) samples 1-85 represent the 
calibration (i.e., training) dataset and samples 86-176 represent the Guam (i.e., 
unknown) dataset. The discrimination line (red dash) indicates the point at which 
samples above are predicted as Etelis boweni, and below are predicted as Etelis 
carbunculus. Guam data are displayed by a size range cut-off, given that only 
Etelis boweni are expected to grow larger than 60 cm FL. B) Model predictions 
for E. boweni are shown.   
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INTRODUCTION 

 

One innovative approach that is being evaluated to rapidly age fish is Fourier transform 

near infrared (FT-NIR) spectroscopy. FT-NIR spectroscopy is a non-destructive analytical tool 

that collects information about a sample’s light absorption within the near infrared 

electromagnetic spectrum (800-2,500 nm). The technology itself has been well established in the 

dairy and agricultural industry for decades (Rasco et al. 1991, Sorvaniemi et al. 1993); however, 

its use in fisheries research is still relatively novel. The research and development for 

implementation of FT-NIR spectroscopy at the six National Oceanic and Atmospheric (NOAA) 

Fisheries Science Centers is part of a NOAA strategic initiative (Helser et al. 2019a). The 

initiative funds research to develop methodology for respective species of interest at each center 

and potentially makes FT-NIR spectroscopy ready for practical use on a regular basis. 

The application of FT-NIR spectroscopy has proved to be a useful tool for fisheries 

scientists despite the limited understanding of what is being measured within an otolith. FT-NIR 

spectroscopy has been used to scan the otoliths and derive ages of individual fish of several 

species, including walleye pollock (Gadus chalcogrammus) (Helser et al. 2019b), red snapper 

(Lutjanus campechanus) (Passerotti et al. 2020a, b), saddletail snapper (Lutjanus malabaricus) 

(Wedding et al. 2014, Robins et al. 2015), Pacific cod (Gadus macrocephalus) (Healy et al. 

2021), and barramundi (Lates calcarifer) (Wright et al. 2021). The methods for analyzing 

otoliths of the aforementioned species include scanning the otoliths convex side down at a 

consistent orientation but vary slightly in the accessories used. Helser et al. (2019b) and 

Passerotti et al. (2020a, b) used a gold-coated reflector (i.e., stamp) over the otolith, though the 

latter found the additional use of a Teflon disc improved the prediction models due to the small 
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size of otoliths. Wedding et al. (2014) placed their samples in quartz glass vials, and Robins et al. 

(2015) used no accessories at all. The use of scanning accessories likely needs to be examined 

for each new species to be aged using FT-NIR spectroscopy.  

The Southwest Fisheries Science Center in La Jolla, California, is tasked with assessing 

coastal pelagic species (CPS), which include performing stock assessments. Pacific sardine 

(Sardinops sagax) are an important CPS whose populations are assessed annually, and thus ages 

are generated frequently. Pacific sardine range from southeast Alaska down to Baja California, 

can grow up to about 41 cm standard length (SL), though individuals caught in the fishery are 

most frequently under 30 cm SL, and are short lived with a maximum reported age of 15 years 

old, though most individuals collected from trawl surveys and port sampling are less than 5 years 

old (Eschmeyer et al. 1983, Kuriyama et al. 2020). 

The use of FT-NIR spectroscopy technology to estimate age must be evaluated on a 

species-to-species basis, as some otolith morphology and increment deposition patterns might be 

a better fit for this type of analysis than others. Pacific sardine were chosen to be evaluated due 

to their importance in CPS stock assessments, management, and the California Current 

Ecosystem. Pacific sardine present a particular challenge to FT-NIR spectroscopy due to their 

small size and short lifespan; their otoliths are extremely small (<6 mm, Javor et al. 2011) 

compared to long-lived species whose otoliths grow to much larger sizes. In this study, we 

developed a methodology that best captures the spectral information from Pacific sardine 

otoliths. Otolith condition, placement, and spectrometer accessories were assessed for optimal 

spectral output. Otoliths were scanned using 10 accessories, such as a chrome ring and a Teflon 

disc, to investigate what tools were needed to accommodate the small otolith size. 
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METHODS 

 

Pacific sardine were collected along the west coast from CPS spring and summer trawl 

surveys conducted by the NOAA’s Southwest Fisheries Science Center (NOAA-SWFSC) from 

2004 to 2021, and port sampling conducted by California Department of Fish and Wildlife 

(CDFW), Washington Department of Fish and Wildlife (WDFW), and Oregon Department of 

Fish and Wildlife (ODFW) from 2004 to 2016 (see Dorval et al. 2022 for detailed sampling 

methods). Samples collected for Pacific sardine range from Vancouver Island, British Columbia, 

Canada (49.65°N, 125.44°W) to around San Diego, California (33.25°N, -117.56°W). All Pacific 

sardine samples that were analyzed were considered to be the northern stock, using the most up-

to-date population structure assessment (Zwolinski and Demer 2023). After sample collection, 

sagittal otoliths were extracted, cleaned, dried, and stored in labeled plastic tubes. A set of 

Pacific sardine otoliths from an age validation study were included as ‘known age’ samples (K. 

C. James et al., SWFSC, in review). Juvenile fish were collected in 2014 and 2015, were 

chemically marked with oxytetracycline (OTC), and maintained in captivity for up to a year. 

Sagittal otoliths were extracted after mortality and stored dried in black, labeled plastic tubes. 

 

Traditional Ageing 

 

Pacific sardine otoliths were traditionally aged using the methods described by Yaremko 

(1996), which include submerging whole otoliths in distilled water with a black background. The 

number of annuli on the distal side of the otolith was counted using a dissecting microscope at 

25x magnification with reflected light. Only otoliths whose ages were agreed upon by all three 
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age readers were chosen for the reference sets to create calibration models for each species. The 

NOAA-SWFSC and CDFW data sets only comprised otoliths whose ages were previously 

included in stock assessments. To increase the sample size for older age classes of Pacific 

sardine, we included otoliths collected off Oregon and Washington and aged by WDFW, as older 

Pacific sardine are generally found in the Pacific Northwest. Among all sources, we aimed to 

have at least 25 samples per age class for the reference set, but this was hard to achieve for older 

ages that were not frequently caught (Table 14.1). 

 

Scanning Specifications 

 

For all experiments and model predictions described below, sagittal otoliths were scanned 

using near infrared spectroscopy on a Bruker TANGO-R FT-NIR single-channel spectrometer 

(Bruker Optics, Ettlingen, Germany). Spectral data were collected using the OPUS software 

v8.5(SP1). Scanning specifications for the TANGO were set for 64 scans (averaged into a final 

raw absorbance value), with a frequency of 16 cm-1 at 8 wavenumber intervals. All spectral data 

were plotted as absorbance values by wavenumbers ranging from 11,528 to 3,952 cm-1. All 

otoliths were placed convex side down and were weighed to the nearest 0.0001g after being 

scanned. Primary scanning and analysis were performed at the NOAA-SWFSC in La Jolla, 

California, with some additional scans for experiments performed at the NOAA-SWFSC in 

Santa Cruz, California. 
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Experimental Scans 

 

A series of experimental scans determined the best placement, otolith condition, and 

accessories for the otoliths in this study. Unless otherwise stated, all experimental scans were 

done only on the otoliths collected from the NOAA-SWFSC trawl survey, hereafter referred to 

as the Pacific sardine trawl set (Table 14.1). Otoliths were scanned using a chrome ring and a 

large gold stamp for the initial tests to determine best placement and otolith condition. 

The first sets of experimental scans were completed to determine the best orientation and 

position on the scanning window. Results were judged by visually assessing the raw spectra in 

OPUS to see if it met the criteria for a ‘usable’ scan. A usable scan of an otolith has minimal 

noise and a near-flat ~11,528 to 7,192 (or >8,000) wavenumber range, as well as a scan that falls 

below 2 AU (absorbance unit) on the y-axis (Jason Erikson, Bruker, pers. comm). We first 

scanned three pairs of Pacific sardine otoliths in four different orientations in the center of the 

window: 0°, 90°, 180°, 270° (Fig. 14.1a). We then scanned those same three Pacific sardine 

otoliths in nine different positions on the window with the 0° orientation (Fig. 14.1b). Otoliths 

were placed in the 0° orientation in the center of the window (position 5; Fig. 14.1b) for all 

subsequent experimental scans. 

Otoliths are sometimes broken or slightly dirty (Fig. 14.2). Breakage and excess tissue 

aren’t uncommon, so we tested these conditions to determine if those otoliths provided usable 

scans. Left and right otoliths, where one was broken and the other was whole, were scanned from 

42 individuals from the Pacific sardine trawl sample. Age predictions from a calibration model 

from only broken otoliths, and only whole otoliths were then compared. This same analysis was 
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then done for left and right otoliths collected from 40 individual fish where one otolith was dirty 

and the other one was clean. 

To determine the accessory that produced the best scan, we tried several combinations of 

accessories to determine what tools, if any, were needed to give the most reliable, precise, and 

repeatable results. The nine combinations of scanning accessories that were tested on five Pacific 

sardine otoliths included 1) no accessory, 2) a small chrome stamp, 3) a small gold stamp, 4) a 

large gold stamp, 5) a chrome ring, 6) a chrome ring plus a flat chrome stamp, 7) a chrome ring 

plus a small gold stamp, 8) a chrome ring plus a large gold stamp, 9) and a Teflon ring (Fig. 

14.3). The flat chrome stamp (Fig. 14.3b), rather than the chrome stamp (Fig. 14.3a), was used in 

combination with the chrome ring to prevent light from escaping through any gaps. Accessories 

that resulted in scans that visually lacked the above criteria for a ‘usable’ scan were excluded 

from any future testing.  

To test for fine-scale variability between large gold stamps of the same manufacturer and 

model, two otoliths were scanned by one individual on Santa Cruz SWFSC’s TANGO with the 

chrome ring and the La Jolla SWFSC’s large gold stamp, then without changing any other 

variables, scanned again with the Santa Cruz SWFSC’s large gold stamp. The resulting raw 

spectra were judged qualitatively. 

 

RESULTS 

 

For both rotation and otolith placement, consistency was most important. Raw spectra 

appeared different among orientations (Fig. 14.4). The position on the TANGO window was 

very important, and the resulting raw spectra differed greatly among some positions (Fig. 14.5). 
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Having the otolith in position seven, eight, or nine (bottom left, bottom center, bottom right, 

respectively) produced the worst scans, with almost no prominent peaks, whereas position five 

(center) appeared to produce the best scans with very prominent peaks (Fig. 14.5).  

Raw spectra from broken and whole otoliths of the same individual showed some 

differences (Fig. 14.6), whereas raw spectra from dirty and clean otoliths of the same individual 

showed little difference (Fig. 14.7). It is important to note that otoliths that were dirty were not 

completely covered in tissue, but rather had random spots of tissue occurring at different 

locations on the surface of the otolith.  

The choice of accessory greatly influences the shape and absorbance values observed for 

raw spectra for the Pacific sardine otoliths (Fig. 14.8). The accessories that were completely 

ruled out for further use due to a lack of a near-flat 11,528 to 8,000 wavenumber range 

(recommended by Jason Erikson, Bruker, pers. comm.) included the small chrome stamp and 

small gold stamp, with or without the chrome ring, the large gold stamp without a chrome ring, 

and Teflon disc (Fig. 14.9). The three accessories set-ups that were chosen for future evaluation 

on the trawl set for Pacific sardine were 1) no accessory, 2) chrome ring only, and 3) chrome ring 

and large gold stamp.  

There appeared to be a difference in absorbance values between the raw spectra from the 

same otoliths scanned with La Jolla’s gold stamp and Santa Cruz’s gold stamp, where La Jolla’s 

gold stamp produced higher absorbance values (Fig. 14.10).  
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CONCLUSIONS 

 

Overall, consistency is the key to obtaining reliable FT-NIR spectroscopy scans for small 

CPS. Otoliths should be scanned in a manner that is easily reproduced from scan-to-scan and 

technician-to-technician. Left and right otoliths that were both clean and whole showed no 

significant difference, which is consistent with Robins et al.’s (2015) findings for red snapper 

otoliths. Whole, clean, and dry otoliths must be in the same orientation and position on the 

window for every scan. Researchers have a higher risk for error when placing small otoliths on 

the scanning window than larger otoliths, so extra care needs to be taken. Small amounts of dried 

tissue on an otolith seems to be acceptable, though clean otoliths are always preferred if 

available. Markings to indicate correct otolith placement, without compromising the integrity of 

the TANGO’s quartz scanning window, are helpful. Minimizing the number of accessories 

means fewer changing variables over time, such as scratches and replacement parts, yet using no 

accessory yields unusable scans for the smallest otoliths. We used our best judgment to decide 

that the gold stamp potentially added unnecessary variability for Pacific sardine and we 

concluded using only the chrome ring is the best accessory, but this may not be true for other 

species with larger otoliths. In conclusion, the method developed in this study may not be the 

ideal solution for all species with small otoliths, but hopefully provides a starting point for future 

species-specific method development.  
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Table 14.1. -- Sample sizes per age class for the reference set from all data sources for Pacific 
sardine (n = 537) that were used to create a calibration model. CDFW = California 
Department of Fish and Wildlife, WDFW = Washington Department of Fish and 
Wildlife, OTC = oxytetracycline, SWFSC = Southwest Fisheries Science Center. 

 

 Age (years) 
Source 0 1 2 3 4 5 6 7 8 9 
CDFW - Fishery 9 13 19 19 9 9 4 3 2 0 
WDFW - Fishery 0 0 0 0 0 0 14 22 10 10 
SWFSC – OTC 92 131 3 0 0 0 0 0 0 0 
SWFSC - Trawl 6 15 20 18 18 17 21 25 28 0 
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Figure 14.1. -- a) Otoliths were scanned in four orientations, 0°, 90°, 180°, and 270°. b) Otoliths 
were scanned in nine different positions on the scanning window. The otoliths 
shown here are from Pacific sardine (Sardinops sagax) viewed as if you were 
directly above the scanning window looking down.  
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Figure 14.2. -- Examples of a) whole and broken and b) dirty (left) and clean (right) sagittal 
otolith pairs that were used to examine scan difference between otoliths of 
different condition. The otoliths pictured in a) were submerged in water. 

 

 

 

 

Figure 14.3. -- The accessories used to test scanning methods, sometimes in conjunction with 
one another, were a) small chrome stamp, b) flat chrome stamp, c) small gold 
stamp, d) large gold stamp, e) chrome ring taped to the TANGO, and f) Teflon 
disc taped to the TANGO. 
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Figure 14.4. -- Raw spectra of three Pacific sardine (Sardinops sagax) otoliths in four different 
orientations. See Figure 14.1a for what each orientation represents.  

 

 

 

 

Figure 14.5. -- Raw spectra of three Pacific sardine (Sardinops sagax) otoliths in nine different 
positions on the TANGO window. See Figure 14.1b for what each window 
position represents.  
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Figure 14.6. -- Raw spectra of Pacific sardine (Sardinops sagax) otoliths pairs from 42 
individuals with one otolith being broken (red) and the other being whole (black) 
from each individual.  
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Figure 14.7. -- Raw spectra of Pacific sardine (Sardinops sagax) otoliths pairs from 40 
individuals with one otolith being dirty (red) and the other being clean (black) 
from each individual.  
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Figure 14.8. -- Raw spectra of the nine different accessory combinations for Pacific sardine 
(Sardinops sagax). This figure is meant to showcase the large differences in 
absorbance values as the spectral shape of certain accessories is masked due to the 
differences in y-axis values.  
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Figure 14.9. -- Raw spectra of five Pacific sardine (Sardinops sagax) otoliths for the nine 
different accessory combinations. This figure is meant to showcase the different 
shapes of the raw spectra, so each accessory has a different y-axis.  
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Figure 14.10. -- Raw spectra of two Pacific sardine (Sardinops sagax) scanned on Santa Cruz 
SWFSC’s TANGO with the chrome ring and the La Jolla SWFSC’s large gold 
stamp (blue), then without changing any other variables, scanned again with the 
Santa Cruz SWFSC’s large gold stamp (red). 
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INTRODUCTION 

 

Fourier transform near infrared (FT-NIR) spectroscopy is an emerging method to 

estimate age of marine fishes. FT-NIR spectroscopy has been previously shown to be an 

effective method at predicting ages of individuals using partial least squares (PLS) regression 

models trained on known-age samples (Arrington et al. 2022, Healy et al. 2021, Passerotti et al. 

2020b, Rigby et al. 2016). However, the efficiency and cost-savings of FT-NIR spectroscopy 

relative to traditional ageing techniques is species- and laboratory-specific and has yet to be 

evaluated directly within the Northeast Fisheries Science Center (NEFSC) Age and Growth 

Laboratory.  

Within the framework of high-volume production ageing, we compare the feasibility of 

estimating ages using FT-NIR spectroscopy for Acadian redfish Sebastes fasciatus to that of 

traditional ageing methods that require processing of otoliths and visual counts of annual growth 

rings under a microscope. Production ageing of otoliths at the NEFSC uses a unique high-

throughput processing setup that employs the use of barcoding, data entry applications and a 

Labcut 250B saw (Extec, Enfield, CT) to maximize efficiency. This setup allows multiple 

otoliths to be processed simultaneously and represents a different perspective on efficiency that 

has not been directly compared to FT-NIR spectroscopy ageing methods to date. Herein, we use 

three metrics to compare these methods: efficiency, cost, and ageing precision. 
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METHODS 

 

Processing 

 

Processing otoliths for ageing with the Labcut 250B saw consists of four steps: 1) otoliths 

are mounted on polystyrene resin in trays, 2) once the resin is dry, the blocks with otoliths are 

removed from the trays, 3) the blocks are cut using the Labcut 250B saw, and 4) the sections are 

mounted on clear plastic slides (NEFSC in review). Each block holds on average 75 samples, 

which can be cut simultaneously with the saw. 

 For FT-NIR spectroscopy, all samples were scanned on a Bruker TANGO-R near 

infrared spectrometer (Bruker, Billerica, MA) per the methods outlined in Rubin et al. (this 

volume). All otoliths were cleaned with 70% ethanol and blotted dry using laboratory tissue 

before scanning. Otoliths then were scanned sulcus side down with the rostrum oriented 

horizontally on the sample window while covered with a rubber-rimmed gold reflective stamp 

while scanning to reduce stray light. All absorbance spectra were collected at a resolution of 64 

scans every 16 wavenumbers. 

 

Efficiency 

 

To estimate efficiency of the traditional Labcut 250B method, processing times were 

recorded for 4,000 otoliths across all steps including embedding, sectioning, and mounting 

sections on slides and averaged to calculate the number of otoliths that could be processed per 

hour (Table 15.1). For FT-NIR spectroscopy, efficiency was estimated using scans of Acadian 
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redfish otoliths from the fall 2015 (n = 984) and fall 2016 (n = 925) Northeast Trawl Survey. 

Processing time for FT-NIR spectroscopy included cleaning the otolith, placing it on the sample 

window, initiating and completing a scan, and placing the otolith back in the envelope. Times 

were averaged per otolith (Rubin et al. this volume). 

 

Cost 

 

Costs were estimated using metrics of initial and long-term cost. Initial cost for each 

method includes the purchase of two Labcut 250B saws and two Tango-R spectrometers (one as 

a backup, which would be necessary to ensure no stoppage of work should one malfunction) and 

all supplies needed for one year of processing. The long-term cost includes supplies needed to 

produce about 60,000 samples and maintenance costs.  

 

Precision 

 

All otolith samples were aged by an expert age reader using a Leica MZ6 microscope 

under reflected light at 25X to 50X magnification. To test for precision, a random subsample of 

345 otoliths was re-aged by the same reader with no knowledge of prior ages. Percent agreement 

(PA) and coefficient of variation (CV) were calculated and symmetry tests conducted (Campana 

et al. 1995, Chang 1982, Evans and Hoenig 1998). 

FT-NIR spectroscopy age prediction models were created per the methods outlined in 

Rubin et al. (this volume). The models were assessed for accuracy using the coefficient of 

determination (r2), root mean square error (RMSE) of cross validation and of prediction, residual 
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prediction deviation (RPD), model bias, and slope. To facilitate direct comparison of precision 

and bias metrics between FT-NIR spectroscopy and traditional ages (PA, CV, and the Evans-

Hoenig symmetry test), raw FT-NIR spectroscopy (i.e., fractional) ages were rounded to the 

nearest integer using a standard rounding routine, meaning any fractional age ending in ≥ 0.5 

was rounded up, and anything ending in ≤ 0.4 was rounded down. 

 

RESULTS 

 

Efficiency 

 

 Using the Labcut 250B method, it took 56 minutes to process 70 otoliths per hour to the 

point of being ready to age. Using FT-NIR spectroscopy, it took 130 minutes to clean and scan 

70 samples (Table 15.1).  

 

Cost 

 

 For the Labcut 250B saw, initial cost estimates are around $38,000, while for FT-NIR 

spectroscopy, the initial cost is around $150,000. For the long term, the Labcut 250B saw costs 

about $3,000, while the FT-NIR spectroscopy long-term cost ranges from $6,000 to $17,000 

depending on software needed for data analysis and whether or not a service contract is needed 

for maintenance and repairs (Table 15.1).  
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Precision 

 

 Ageing precision for traditional ageing of Acadian redfish otoliths produced a 69.6% 

agreement and a CV of 1.81% between reads. FT-NIR spectroscopy ages produced a 29.5% 

agreement and a CV of 15.88% relative to traditional ages. The Evans-Hoenig test of symmetry 

for traditional age estimates did not find any bias across ages (ꭓ2 = 1.14, d.f. = 4, p = 0.889). FT-

NIR spectroscopy age estimates were not biased overall (ꭓ2 = 7.84, d.f. = 8, p = 0.480) but did 

however show bias for some individual age classes up to age 5 (Fig. 15.1).  

 

DISCUSSION 

 

 Our results show that, with minimal investments in sample processing technology for 

traditional ageing, the traditional method utilized by the NEFSC for otolith processing is twice as 

fast as the FT-NIR spectroscopy method. We did not include in our analysis the time required for 

producing ages because the process for producing FT-NIR spectroscopy ages requires model 

building and data optimization, which is a significant time investment on a much different scale 

that is difficult to compare to traditional ageing. On average, 15 samples can be aged per hour 

using traditional methods, while model building and data optimization to produce the FT-NIR 

spectroscopy model for Acadian redfish took several weeks and is still considered preliminary. 

This time estimate could be reduced for future FT-NIR spectroscopy models, but at this time it is 

still less efficient than producing a traditional age estimate. 

FT-NIR spectroscopy is three times more expensive in the short-term and five times more 

expensive in the long-term when compared to the normal operating costs of the Labcut 250B 
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processing method. In terms of precision, FT-NIR spectroscopy predicted ages had lower 

agreement and higher variation relative to traditional ages than was demonstrated by traditional 

inter-reader variability. Given the lower efficiency in processing time, increased cost, and lower 

precision of FT-NIR spectroscopy age prediction relative to traditional methods, we caution 

potential adopters of FT-NIR spectroscopy methodology to do a cost analysis of the two methods 

before implementing this new technology. While some species require less efficient otolith 

processing methods (e.g., those cut individually with low-speed saws), roughly 80% of the work 

done at the NEFSC utilizes the high-throughput Labcut 250B saw. Unique methodologies 

specific to each laboratory will define whether FT-NIR spectroscopy conveys time and cost 

savings in the long term.  
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Table 15.1. -- Comparison of cost and efficiency of Traditional (Labcut 250B saw) ageing 
method versus Fourier transform near infrared spectroscopy (FT-NIRS). Initial 
cost includes the purchase of two Labcut 250B saws and two Tango-R 
spectrometers and supplies needed for one year of processing. The long-term cost 
includes supplies needed to produce about 60,000 samples and maintenance costs. 
Efficiency is the amount of time it takes to process 70 samples. 

 

  Traditional FT-NIRS 

Short-Term Cost 

Equipment  $36,000  $130,000  

Supplies $2,300  $1,000  

Total $38,300  $131,000 

Long-Term Cost 

Supplies $2,300  $1,000  

Replacement parts $500  $5,600  

Service contract 0 $9,000  

Software 0 500 

Total $2,800  $16,100  

Efficiency 
Mount/Clean 42 70 

Section/Scan 14 60 

Total 56 130 
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Figure 15.1. -- Mean bias (black circles) ± standard deviation for Acadian redfish Sebastes fasciatus. A) Fourier transform near 
infrared spectroscopy (FT-NIRS) and B) traditional ages by age class for all test sets combined, as predicted by the All 
Regions Combined Truncated Calibration Model.
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ABSTRACT 

 

Fish age estimation is crucial for effective stock management, but traditional methods are 

labor-intensive and subject to poor repeatability for longer-lived species. This study investigated 

an alternative approach utilizing Fourier transform near infrared (FT-NIR) spectroscopy of 

otoliths coupled with multimodal convolutional neural networks (MMCNN).  Multiple previous 

studies applied partial least squares regression (PLS) to otolith spectroscopic data for age 

prediction. One recent study applied the FT-NIR/MMCNN approach to shorter-lived walleye 

pollock (Gadus chalcogrammus). In this study, we extended the approach to two longer-lived 

economically-valuable species: northern rockfish (NRF, Sebastes polyspinis) from the Gulf of 

Alaska (GOA) and red snapper (RS, Lutjanus campechanus) from the U.S. Gulf of Mexico 

(GOM). We trained MMCNN to integrate spectral data with biological and geospatial data. 

MMCNN performed well, yielding high r2 values (0.92 for NRF and 0.91 for RS) and low 

RMSE values (3.4 years for NRF and 1.0 years for RS) for training data. The models 

demonstrated high accuracy for a holdout data set yielding high r2 values (0.92 for NRF and 0.89 

for RS) and low RMSE values (3.4 years for NRF and 1.1 years for RS) for test data. The Bland-

Altman plots confirmed the agreement with low systemic bias between MMCNN predictions and 

traditional microscope-based ages. The SHAP (SHapley Additive exPlanations) feature 

importance analysis revealed the significant influence of otolith spectra, otolith weight, fish 

length, and geospatial data on age predictions. This study demonstrated the potential of the FT-

NIR/MMCNN approach for efficient age estimation in long-lived fish species, contributing to 

enhanced fisheries management and conservation efforts. 
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INTRODUCTION 

 

Fish age estimation is a vital aspect of fisheries management, providing crucial data for 

understanding fish populations and informing sustainable harvesting practices. Traditional age 

estimation methods, particularly those based on microscopic examination of otoliths, have 

proven to be labor-intensive and prone to reader variability, which can hinder accurate and 

timely assessments. To overcome these limitations, researchers have explored innovative 

techniques like Fourier transform near infrared (FT-NIR) spectroscopy for more efficient and 

reliable age predictions. A few recent studies implemented a traditional chemometric approach 

of using partial least squares regression (PLS) to build a model using otolith FT-NIR 

spectroscopic data of various fish species (Wedding et al. 2014, Helser et al. 2019b, Healy et al. 

2021, Passerotti et al. 2020b). A more recent study of eastern Bering Sea (EBS) walleye pollock 

(Gadus chalcogrammus) otoliths used FT-NIR spectroscopy coupled with multimodal 

convolutional neural networks (MMCNN) to rapidly predict fish age with comparable 

performance to traditional microscope-based methods (Benson et al. 2023). Benson et al. (2023) 

suggested the MMCNN approach provides improved age predictions compared to traditional 

chemometric models such as PLS. While previous studies have demonstrated the success of this 

approach for certain fish species, its applicability to economically valuable long-lived species, 

such as northern rockfish (Sebastes polyspinis) from the Gulf of Alaska (GOA) and red snapper 

(Lutjanus campechanus) from the U.S. Gulf of Mexico (GOM), remains to be explored. 

Northern rockfish (NRF) are commercially important rockfishes that live 80+ years and are of 

particular interest due to their high abundance in the GOA and EBS waters (Kastelle et al., 

2016). Red snapper (RS) are an ecologically and economically important reef fish that live 50+ 
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years and are estimated to be rebuilding in GOM waters (SEDAR 2018). By extending the 

application of FT-NIR spectroscopy coupled with MMCNN to these species, our study aims to 

shed light on the potential advantages and limitations of this method, offering valuable insights 

into its effectiveness and potential contributions to fisheries management and conservation 

efforts. 

 

METHODS 

 

Data Collection 

 

Otoliths from NRF were collected during biennial bottom trawl surveys conducted by the 

Alaska Fisheries Science Center (https://www.fisheries.noaa.gov/alaska/ecosystems/alaska-fish-

research-surveys) in the GOA in the years 2013, 2015, 2017, and 2019. The data set comprised 

1,460 otoliths, along with corresponding fish length in addition to geographic coordinates, depth, 

and temperature data (Table 16.1A, Fig. 16.1A-B). The Age and Growth Program at the Alaska 

Fisheries Science Center collected otolith weights and fish ages using traditional microscope-

based methods, following established protocols described in Matta et al. (2012) and Helser et al. 

(2019b). For RS, otoliths (n = 6,053) were collected from GOM fishery dependent and fishery 

independent sources between the years 2017 and 2019. The Biology and Life History Branch at 

Panama City weighed, sectioned, and aged RS otoliths using traditional, microscope-based 

methods. The data included ages, substock information assigned as East GOM or West GOM 

using the Mississippi River as the separating line (SEDAR 2018), fork length, and otolith weight 

(Table 16.1B, Fig. 16.2A-B). 

https://www.fisheries.noaa.gov/alaska/ecosystems/alaska-fish-research-surveys
https://www.fisheries.noaa.gov/alaska/ecosystems/alaska-fish-research-surveys


221 
 

Spectroscopic Measurements 

 

Diffuse reflectance measurements from all otoliths were obtained using Bruker Optics 

Tango R or MPA II spectrometers. The OPUS software version 7.5 (Bruker Optics, Ettlingen, 

Germany) was used for spectral acquisition. Before scanning, NRF otoliths were removed from 

glycerin-thymol solution and patted dry with a laboratory tissue. At the time of otolith collection, 

all RS otoliths were stored dry in coin envelopes; therefore, no preparation was needed prior to 

scanning. Each otolith was placed in a concave up position on the spectrometer's integrated 

sphere and covered with a gold-coated reflector stamp (see Benson et al. (2020) for a detailed 

description and pictures of scanning setup). Final absorbance spectra were acquired between 

11,500 and 4,000 cm-1, averaging 64 scans at a resolution of 16 cm-1. Spectral data for each 

species were preprocessed with first derivative, second polynomial, 17-point Savitzky-Golay 

smoothing (Figs. 16.1C-F, 16.2C-D). 

 

Data Analysis 

 

The data set for each species was divided into training and test groups using the "onion" 

method in the chemometrics software Solo 8.7 (Eigenvector Research, Inc., Manson, WA, USA). 

The training group was used to train a neural network, while the test group was kept aside to 

evaluate a model on unseen data. For NRF, 90% of the samples (n = 1,418) were assigned to the 

training set, and the remaining 10% (n = 142) were designated as the test set. The 90/10 split was 

selected to maximize the amount of data in the training set due to the total low sample size. 

Integer age was assigned as the target variable for NRF. For RS, specimens with higher-
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confidence ages (n = 1,406) were placed in the training set, and the remaining data were 

randomly split, with 74% assigned to the same training set. The specimen with the oldest 

microscope-based age was also included in the training set. The final training (n = 4,845) and test 

(n = 1,208) sets for red snapper comprised an 80/20 data split, with fractional age as the target 

variable.  

The MMCNN model, as described in Benson et al. (2023), was applied to both species 

(Fig. 16.3). The model consisted of two primary branches, one associated with spectral data and 

the other with biological and geospatial data. The spectral data branch included a convolutional 

layer and the output was flattened and concatenated with the biological/geospatial data branch. A 

fully connected dense layer activated by a rectified linear unit (ReLU) introduced nonlinearity to 

the model and dropout was used for regularization to prevent overfitting. The final fully 

connected dense layer had a single output node with a linear activation function. Python 3.7.0 

(Van Rossum and Drake 2009) with TensorFlow v. 2.5.0 (Abadi et al. 2016) and Keras API 

(Chollet 2015) implementation were used to train the models. The hyperband optimization (HB) 

was applied to improve the models’ generalizing abilities (Li et al. 2017). 

 

Performance Evaluation 

 

The performance and robustness of the models were assessed using coefficients of 

determination (r2) for training and test data. Root mean square error (RMSE), which represents 

the average magnitude of the errors between predicted and traditional ages, was calculated for 

both data sets to measure the accuracy of the predictions. Bland-Altman (BA) plots were 

employed to compare MMCNN predictions with traditional microscope-based ages, enabling the 
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identification of any systematic differences or biases between the two methods (Bland and 

Altman 1999). The plot allowed examination of the level of agreement in terms of the 

measurement variability. It consisted of a scatter plot where the x-axis represented the average of 

the two measurements being compared and the y-axis showed the difference between the two 

measurements for each data point. Each data point represented a single measurement. A center 

line, which represented the overall bias between the two measurements, was drawn at the mean 

difference between the two methods. Two additional lines, which represented the range within 

which approximately 99% of the differences between the two measurements were expected to 

lie, calculated as the mean difference ±2.58 times the standard deviation of the differences. Any 

data points that fell outside the limits of agreement suggested discrepancies between the two 

ageing methods for those particular measurements.  

Comparison of accuracy between ages generated by the traditional and FT-NIR age 

estimation method was done by plotting the frequency of the mean bias by age. Traditional bias 

was calculated as a difference between two trained age readers’ microscope-based age estimates 

for the same specimen. FT-NIR bias was calculated as a difference between age predicted by the 

MMCNN models and traditional microscope-based age estimation (Helser et al. 2019b). 

Fractional numbers were rounded to the nearest integer. We examined precision for both 

traditional methods and FT-NIR method by calculating percent agreement (PA), the percent 

agreement within one year (PA ± 1), coefficient of variation (CV), and average percent error 

(APE) (Campana 2001, Ogle 2017b, Ogle 2018). The metrics for each species were calculated 

on the subset of specimens that had two traditional ages in addition to the age predicted by the 

MMCNN model. 

 



224 
 

Model Interpretability 

 

To interpret the MMCNN predictions, SHAP (SHapley Additive exPlanations) was used 

to compute a contribution of each feature to the model’s output (Shapley 1953, Lundberg and 

Lee 2017). The SHAP values, based on cooperative game theory, provided a fair and consistent 

measure of feature importance. The most influential features driving the model's predictions 

were identified and visualized using SHAP feature importance plots. Each bar in the plot 

represented a feature with its length corresponding to the magnitude of its effect on the model's 

output. The plot allowed us to identify the most influential features driving the model's 

predictions. The spectral wavenumber contributions were aggregated by thousands and all 

features were ordered according to their importance. 

 

RESULTS AND DISCUSSION 

 

The application of FT-NIR spectroscopy combined with MMCNN proved to be a 

promising approach for accurate and efficient fish age estimation. The MMCNN models 

exhibited strong performance, demonstrating a high degree of correlation between FT-NIR ages 

and traditional microscope-based ages for both NRF and RS. The scatter plots of the MMCNN 

age predictions showcased a close alignment with the reference microscopic ages, indicating 

accuracy and reliability of the models for both species (Fig. 16.4). For NRF, the MMCNN model 

achieved an r2 of 0.92 and an RMSE of 3.4 years for both the training and test data sets. At least 

67% of the estimated NRF ages were predicted within 3.4 years of traditional microscopic ages, 

while 95% of the estimated ages were within 6.8 years of the reference ages. Similarly, the RS 
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MMCNN model demonstrated strong predictive capabilities, with an r2 of 0.91 and an RMSE of 

1.0 year for the training data set, and an r2 of 0.89 and an RMSE of 1.1 years for the test data set. 

At least 67% of the estimated RS ages were accurately predicted within 1.1 years of traditional 

microscopic ages, and 95% of the estimated ages fell within 2.2 years of the reference ages. A 

higher mean age and maximum age for NRF (max age = 58 years, mean age = 25 years; Table 

16.1A) compared to RS (max age = 50 years, mean age = 6 years; Table 16.1B) could potentially 

explain higher RMSE for NRF. In addition, the majority of the RS specimens were aged 20 years 

old or less (Fig. 16.2A-B) with just a few older specimens being included in the training data set 

and not available for the test set (Fig. 16.4C-D). For NRF, the training and test data set included 

both young and old fish, which led to a wider spread of ages in the dataset (Figs. 16.1A-B, 

16.4A-B). Predicting ages accurately for both young and old fish could have been more 

challenging, resulting in higher RMSE. Another factor that could have contributed to the NRF 

having higher RMSE is a smaller sample size that could lead to less representative data for 

training the model. Another factor that could contribute is inherent biological variability, leading 

to age-related growth variations even within the same age group. The growth patterns of RS 

otoliths in this study led to a linear relationship of otolith weight with age (Fig. 16.2B), while a 

non-linear growth pattern of NRF where growth slows with age led to a non-linear relationship 

of otolith weight with age (Fig. 16.1B), which can make age prediction more challenging and 

contribute to higher RMSE. 

The performance metrics of the MMCNN models were comparable to previous studies 

that utilized FT-NIR spectroscopy and PLS for longer-lived fish age estimation. For instance, 

Passerotti et al. (2020b) reported an r2 of 0.92 and an RMSE of prediction of 0.99 to 1.02 years 

for red snapper. Wedding et al. (2014) achieved an r2 of 0.94 and an RMSE of prediction of 1.54 
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years for shorter-lived saddletail snapper (Lutjanus malabaricus). Our results were also 

consistent with Benson et al. (2023), who applied MMCNN to FT-NIR spectral, biological, and 

geospatial data of shorter-lived walleye pollock. Benson et al. (2023) reported an r2 of 0.92 and 

an RMSE of prediction of 0.91 years for the test set. 

The BA plots provided additional evidence of the agreement between MMCNN-predicted 

ages and traditional microscope-based ages (Figs. 16.5A and 16.6A). Low systematic bias for 

either species was indicated by the center line not deviating significantly from zero (0.47 years 

for NRF and -0.06 years for RS). The narrow limits of agreement for RS (+2.86/-2.97 years) 

indicated a better level of agreement compared to NRF (+9.06/-8.13 years). The wider limits of 

agreement indicated greater variability and less agreement between the two ageing methods for 

NRF. The presence of multiple data points falling outside of the limits of agreement in the RS 

plot might be attributed to the large range of RS otolith sizes. Passerotti et al. (2020b) noted that 

RS otoliths’ FT-NIR spectra might be affected by otolith size and otolith thickness in addition to 

physical and chemical changes underlying otolith growth. The mean bias by age was equivalent 

between the traditional and FT-NIR methods up to around 40 years of age for NRF (Fig. 16.5B) 

and up to around 18 years of age for RS (Fig. 16.6B).  

For the NRF model predictions, the PA of 13.9% and PA ± 1 year of 41.9% were lower 

than the PA of 28.7% and PA ± 1 year of 64.9% for the traditional microscopic-based between-

reader agreement (Table 16.2A). Between-reader APE and CV were higher for the FT-NIR 

method, with an APE of 5.4% and CV of 7.6% in comparison to an APE of 3.3% and CV of 

4.7% for the traditional method (Table 16.2A). The typical inter-reader precision for NRF is 

usually higher (PA = 44.4%, APE = 2.9%, CV = 4.1%; n = 2852; Goetz et al. 2012) than in our 

study, while the mean age is usually lower (~16 years) than in our study (25 years; Table 16.1A). 
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Since the FT-NIR method relies on traditional age data, difficulties with generating ages by the 

traditional method most likely affected accuracy and precision of the FT-NIR method. For the 

RS model predictions, the PA of 52.1% and PA ± 1 year of 88.79% were lower than the PA of 

68.7% and PA ± 1 year of 93.6% for the traditional microscopic-based between-reader 

agreement (Table 16.2B). Between-reader APE and CV were higher for the FT-NIR method, 

with an APE of 5.5% and CV of 7.8% in comparison to an APE of 3.3% and CV of 4.7% for the 

traditional method (Table 16.2B). Our results were slightly better than the previous study that 

utilized a PLS model for GOM RS spectral data and reported a PA of 41-50%, PA ± 1 year of 

87.1%, and APE of 7.3-13.2% (Passerotti et al. 2020b). The FT-NIR method’s performance 

metrics for either species could also be affected by the fact that we had to round fractional ages. 

Further studies are needed to establish the best protocol for establishing rounding convention for 

the FT-NIR ages. 

The SHAP feature importance plots provided valuable insights into the significant 

factors influencing the MMCNN predictions (Fig. 16.7). Otolith spectra in the 4,000 cm-1 

wavenumber region emerged as the most influential feature for both species, confirming the 

significance of spectral information in age estimation. Additionally, otolith spectra in the 7,000-

5,000 cm-1 wavenumber region played a key role in age predictions, particularly for RS. Otolith 

weight emerged as the most influential among non-spectral features for both species, 

highlighting the impact of otolith size on age determination. Specifically, for the NRF model, 

otolith weight and spectra in the 5,000 cm-1 region exhibited considerable influence. For the RS 

model, spectra in the 5,000 cm-1 and 7,000 cm-1 regions held greater importance than otolith 

weight. Fish length, along with latitude for NRF and substock for RS, were also influential 

features, aligning with existing knowledge of these factors' influence on fish growth and age. 
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These results are comparable to the recent study using the MMCNN on walleye pollock data 

with otolith spectra in the 7,000-4,000 cm−1 wavenumber region having the highest impact on 

predicting fish age (Benson et al. 2023). Otolith weights were not available in that study; 

however, fish length and latitude were the most important features among biological and 

geospatial data ingested by the model. While the MMCNN model demonstrated excellent 

performance, enhancing its interpretability remains an area of improvement. Exploring 

visualization techniques or attention mechanisms could provide deeper insights into the model's 

decision-making process. 

Despite the promising results, several limitations and future considerations should be 

acknowledged. The relatively small sample size for NRF could potentially impact the model's 

generalizability, calling for further exploration with larger and more diverse datasets. Updating 

the models with known-age fish or external validation against alternative age estimation methods 

would strengthen the model's reliability. Temporal validation across different time periods could 

also account for potential variations in fish growth rates and age estimation. Extending the study 

to include data from different geographic regions and a wider range of fish species would 

provide a more comprehensive assessment of the FT-NIR/MMCNN approach under varying 

environmental conditions and life histories. Addressing the discussed limitations and considering 

future model updating methods will further advance the FT-NIR/MMCNN method as a valuable 

tool. 

Our results demonstrated the ability of the FT-NIR/MMCNN approach to closely align 

its age predictions with traditional microscope-based ages for both species, indicating its 

accuracy and reliability. The FT-NIR spectroscopy of otoliths coupled with MMCNN 

demonstrated robust and accurate fish age predictions for long-lived fish species. The study's 
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findings contribute valuable insights into the potential use of this method for diverse fish species, 

supporting sustainable fisheries practices and effective population monitoring. The model's 

performance metrics, agreement with traditional methods, and identification of influential 

features underscore the efficacy of the FT-NIR spectroscopy of otoliths coupled with MMCNN 

as a valuable tool for enhancing fish age estimation accuracy and efficiency.  
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Table 16.1. -- Summary of available data for (A) northern rockfish Sebastes polyspinis and (B) 
red snapper Lutjanus campechanus. 

 

(A) 

 Age (years) Total length (mm) Otolith weight (g) Depth (m) 
Min 3 140 0.02 57 

Max* 58 480 0.44 255 
Mean 25 391 0.22 116 
SD 12 42 0.07 30 

Median 22 400 0.23 110 
* The oldest northern rockfish aged by the Age and Growth Program between 1990 and 2021 was 88 years and 410 
mm (Goetz et al. 2012). 

 

(B) 

 Fractional age (years) Fork length (mm) Otolith weight (g) 
Min 0.70 215 0.14 
Max 49.64 892 5.56 
Mean 5.9 513 0.87 
SD 3.48 114 0.46 

Median 4.95 493 0.73 
*The maximum calendar age used in the most recent assessment was 57 years (SEDAR 2022).  
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Table 16.2. -- Precision statistics for the (A) northern rockfish Sebastes polyspinis (n = 296) and 
(B) red snapper Lutjanus campechanus (n = 1,090) collections. Specimens that 
weren’t assigned a second traditional age have been excluded. PA = percent 
agreement, PA ± 1 yr = percent agreement within 1 year, APE = average percent 
error, and CV = coefficient of variation. 

 

(A) 

Method PA  PA ± 1 yr APE CV 
Traditional 28.7% 64.9% 3.3% 4.7% 
FT-NIR 13.9% 41.9% 5.4% 7.6% 

 

(B) 

Method PA  PA ± 1 yr APE CV 
Traditional 68.7% 93.6% 3.3% 4.7% 
FT-NIR 52.1% 88.79% 5.5% 7.8% 
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Figure 16.1. -- Northern rockfish Sebastes polyspinis (NRF) (A) fish length-for-age and (B) 
otolith weight-for-age scatter plots with blue dots indicating training data set and 
orange dots indicating test set. (C) Raw and (D) first-derivative-transformed 
otolith Fourier transform near infrared (FT-NIR) spectra for NRF training set, (E) 
raw and (F) first-derivative-transformed otolith Fourier transform near infrared 
(FT-NIR) spectra for NRF test set.  
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Figure 16.2. -- Red snapper Lutjanus campechanus (RS) (A) fish length-for-age and (B) otolith 

weight-for-age scatter plots, and (C) raw and (D) first-derivative-transformed 
otolith Fourier transform near infrared (FT-NIR) spectra for RS combined data 
set.  
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Figure 16.3. -- Schematic diagram of the structure of the multimodal convolutional neural 
network (MMCNN). 
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Figure 16.4. -- Scatterplots showing MMCNN fish age predictions versus traditional age 
estimates for northern rockfish Sebastes polyspinis (A) training and (B) test sets 
and red snapper Lutjanus campechanus (C) training and (D) test sets. The dashed 
line is 1:1 agreement and the solid line is linear regression fit. Point density is 
illustrated by overlapping semi-transparent data points.  
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Figure 16.5. --  (A) Bland-Altman plot showing difference in traditional microscope-based age 
estimates and age estimates predicted by the model versus the mean of the 
reference and predicted age estimates for northern rockfish Sebastes polyspinis 
(NRF). Point density is illustrated by overlapping semi-transparent data points. 
(B) Frequency of mean bias by age class for NRF. The error bars show one 
standard error intervals around the mean. The solid line represents a 100% 
agreement line. The dashed lines represent ±1 year. 
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Figure 16.6. --  (A) Bland-Altman plot showing difference in traditional microscope-based age 
estimates and age estimates predicted by the model versus the mean of the 
reference and predicted age estimates for red snapper Lutjanus campechanus 
(RS). Point density is illustrated by overlapping semi-transparent data points. (B) 
Frequency of mean bias by age classes for RS. The error bars show one standard 
error intervals around the mean. The solid line represents a 100% agreement line. 
The dashed lines represent ±1 year.  
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Figure 16.7. -- The relative importance of the input features for the (A) northern rockfish 
Sebastes polyspinis and (B) red snapper Lutjanus campechanus models. 
Wavenumbers are aggregated by 1,000 cm−1. The y-axis indicates the feature 
name in order of importance from top to bottom. The x-axis indicates the average 
of the absolute Shapley value of each feature. 
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ABSTRACT 

 

Fish ages, which are critical for managing stocks, are used to estimate growth rates, 

mortality, age at maturity, and population trends. Unfortunately, traditional otolith age estimation 

methods are labor-intensive and subject to poor repeatability. While Fourier transform near 

infrared (FT-NIR) spectroscopy of otoliths has recently emerged as a highly efficient fish age 

estimation method, our project investigates another possible data modality for rapid and effective 

fish age estimation, red-green-blue (RGB) imagery of whole fish otoliths. Our focus is on how 

effective the three different data modalities (otolith images, FT-NIR spectra, and associated 

biological and geospatial data) are for deep learning-based fish age prediction, both individually 

and when combined. We use data collected from three different species in our model training and 

evaluation: walleye pollock, red snapper, and Atlantic menhaden.  
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INTRODUCTION 

 

Traditional fish ageing methods generally involve manual counting of growth patterns on 

either otoliths or scales by trained experts. These methods are not only time consuming and labor 

intensive, but they also contain some degree of uncertainty, as even expert readers can often 

arrive at different ages for the same otolith sample. Recent research has explored using Fourier 

transform near infrared (FT-NIR) spectroscopy (Helser et al. 2019b) for rapid and effective 

ageing of otoliths. Besides FT-NIR spectroscopy, focus has also been put on using otolith red-

green-blue (RGB) imagery in combination with deep learning (Moen et al. 2018, Politikos et al. 

2021) for ageing as well. We analyze the effectiveness of the three data modalities: FT-NIR 

spectra, otolith image, and associated metadata (biological and geospatial), in fish age prediction 

and the effectiveness of combining all three modalities in one neural network model. Most of our 

experiments are conducted on walleye pollock (Gadus chalcogrammus) data, but we also show 

results on red snapper (Lutjanus campechanus) and Atlantic menhaden (Brevoortia tyrannus). 

 

METHODS 

 

We designed our model to utilize all three available data modalities by having three 

different input branches, one for each modality. The corresponding embedding features for each 

data modality were then concatenated together before being fed to a final, unified prediction 

layer. Following Politikos et al. (2021), we used an inceptionV3 (Szegedy et al. 2016) 

convolutional neural network (CNN) architecture for the image branch, while both the spectral 

data and metadata used a simple multilayer perceptron (MLP). Since we formulated ageing as a 
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classification task, we trained our network using cross-entropy loss. Rather than training with a 

one-hot age label, we instead used a soft label to indicate the uncertainty in our ages obtained 

from human experts.  Our methodology is illustrated in Figure 17.1. 

 

Data 

 

We evaluated our method on data from three different species: walleye pollock, red 

snapper, and Atlantic menhaden. Details of the three datasets can be seen in Figures 17.2, 17.3, 

and 17.4. For walleye pollock metadata, we used fish length, otolith weight, latitude, longitude, 

sex, gear depth, bottom depth, and catch month. The samples in the walleye pollock test set were 

also aged by a second reader so we were able to compare our model versus reader accuracy to a 

reader versus reader agreement. For red snapper metadata, we used fish length, otolith weight, 

sex, and catch location. For Atlantic menhaden metadata, we used fish weight, fish length, and 

catch month. Note that for Atlantic menhaden, we did not have spectra data, only images and 

metadata. 

 

RESULTS AND DISCUSSION 

 

We used classification accuracy to evaluate our model performance compared to a given 

reader age. Due to the difficulty associated with age determination, even for trained human 

readers, we used top-2 accuracy for walleye pollock and red snapper ageing (Figs. 17.5, 17.6). In 

top-2 accuracy, a prediction is considered correct if the groundtruthed age is one of the two ages 
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with the highest scores based on our model output. Regular top-1 accuracy was used for Atlantic 

menhaden ageing (Fig. 17.7). 

Top-2 accuracy for walleye pollock ageing was very high at low ages but gradually 

dropped as age increases (Fig. 17.5). This trend can likely be attributed to two factors. First, the 

difficulty of determining an exact age from an otolith increases as the fish gets older, even for 

expert human readers. Second, older ages (>10 years) are what we call minority classes, meaning 

they are rarer than younger ages and have significantly less training data. This lack of training 

data also affects the model’s ability to accurately age older otoliths. One interesting thing to note 

is that for our walleye pollock data, there was an anomalous dip in accuracy at ages 11 and 12, 

which was not explained by the two factors we identified. 

 

Comparison to Humans 

 

To evaluate whether our deep learning model can replace humans in otolith ageing, we 

compared results with expert human readers on the walleye pollock test set (Fig. 17.8). We found 

that humans achieved a 93.5% reader agreement with a 1-year margin, meaning that 93.5% of 

the time, two expert human readers estimated ages that were within 1 year of each other. Our 

model achieved a slightly lower accuracy of 88.1% with a 1 year margin, meaning that for 88.1% 

of the samples, our model’s top age prediction was within 1 year of the human expert-provided 

ground truth age. While our current deep learning model still fell a bit short of human experts, it 

was only at higher ages (>10) and can potentially be remedied through long-tail training 

methods. 
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Ablation Study 

 

We conducted an ablation study on the walleye pollock dataset to determine how 

effective each data modality was individually for age prediction and how well they 

complemented each other when combined together (Table 17.1). To better understand the 

contribution of each data modality to age discrimination, we removed one or more input 

branches from our model in each experiment of our ablation study. We found that when only 

using one data modality, image was the most informative, providing a top-2 accuracy of 76.4% 

compared to 73.0% of metadata and 70.6% of spectra data. From combining data modalities 

together, we found that each data modality offered unique information for age prediction, as 

models using multiple modalities always produced better results than only using a single input 

modality. Our best result was achieved from using all three data modalities, giving us an 81.1% 

top-2 classification accuracy.  
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Table 17.1. -- Ablation study of model performance with different combinations of input 
modalities. 

 

Input Data Method Test Accuracy 

Image Meta Spectral  Top 1 Top 2 

x   CNN 50.6% 76.4% 

 x  MLP 42.0% 73.0% 

  x MLP 43.2% 70.6% 

 x x MLP 48.0% 75.3% 

x x  CNN 51.5% 78.1% 

x  x CNN 50.3% 77.8% 

x x x CNN 52.8% 81.1% 

   Reader vs Reader 67.0%  
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Figure 17.1. -- Our model architecture for combining otolith imagery, Fourier transform near infrared spectra, and associated meta-
data for age classification. 
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Figure 17.2. -- Age distribution of walleye pollock (Gadus chalcogrammus) data. Data were split roughly into 70% training, 10% 
validation, and 20% test sets. Example walleye pollock otolith images are on the right. 
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Figure 17.3. -- Age distribution of red snapper (Lutjanus campechanus) data. Data were roughly split into 70% training, 10% 
validation, and 20% test sets. Example red snapper otolith images are on the right.  
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Figure 17.4. -- Age distribution of Atlantic menhaden (Brevoortia tyrannus) data. Data were roughly split into 70% training, 10% 
validation, and 20% test sets. Example Atlantic menhaden scale images are on the left.
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Figure 17.5. -- Walleye pollock (Gadus chalcogrammus) classification accuracy on test set using 
our best model combining all three data modalities. Top-2 accuracy was used in 
the evaluation, with overall accuracy being 81.1%. 
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Figure 17.6 -- Red snapper (Lutjanus campechanus) classification accuracy on test set using our 
best model combining all three data modalities. Top-2 accuracy was used in the 
evaluation, with overall accuracy being 70.1%. Note: Groundtruth labels for red 
snapper data are being reevaluated. Results in this figure may not be reliable. 
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Figure 17.7. -- Atlantic menhaden (Brevoortia tyrannus) classification accuracy on test set using 
our best model combining image and metadata. Top-1 accuracy was used in the 
evaluation, with overall accuracy being 87.3%.
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Figure 17.8. -- Comparison of model performance versus human reader for walleye pollock (Gadus chalcogrammus). Model 
prediction versus ground truth age is shown on the left, while reader versus reader age is shown on the right. 
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INTRODUCTION 

 

Traditional ageing techniques have long been standardized using reference collections 

between age readers and laboratories to ensure consistency in the ages produced. This allows 

confidence when combining multiple datasets for analysis in stock assessments. Fourier 

transform near infrared (FT-NIR) spectroscopy is currently being researched as a potential 

technology to replace traditional processing and ageing techniques. Using spectroscopy, a beam 

of light is transmitted through a sample, in this case a whole otolith, and the amount of light 

absorbed is correlated to traditional age estimates yielding a predictive model to estimate fish age 

from absorbance data alone. As with traditional ages, FT-NIR spectroscopy ages must also be 

standardized across spectrometers to ensure consistency across multiple machines, laboratories, 

and users. To date, this has not been researched, and with the increase of machines across 

multiple NOAA laboratories throughout the country, it is a unique opportunity to investigate 

scanning consistency and to quantify ageing precision for FT-NIR spectroscopy ages across 

spectrometers and laboratories. 

 

METHODS 

 

Otoliths from Beaufort’s laboratory collection for gag (Mycteroperca microlepis, n =116) 

and vermilion snapper (Rhomboplites aurorubens, n = 154) from the U.S. South Atlantic were 

chosen as calibration samples to be scanned using either Bruker Tango (Beaufort, Narragansett, 

Santa Cruz, and La Jolla laboratories) or Bruker MPA II (Panama City [PC] laboratory) 

spectrometers (Bruker Corp., Billerica, MA). All laboratories followed the same scanning 
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protocol that the samples were originally scanned with in Seattle 2019 on PC’s MPA II. This 

included the use of a standard gold stamp with a rubber gasket to reduce stray light and identical 

scanning protocols (16 cm-1 resolution, 64 sample scan time and background scan time, and 

wavelength from 11,550 to 3,950 cm-1). Once all the samples were scanned by each laboratory, 

spectra were analyzed using Bruker’s OPUS software to compare spectral data and resulting 

calibration models. Next, we analyzed the new spectral scans and input them into an established 

calibration model created on PC’s MPA II while meeting in Seattle during 2019. The same 

preprocessing techniques were used and models were reran, then compared using model rank, 

the coefficient of determination (r2), root mean square error, bias, and residual prediction 

deviation (Table 18.1). Lastly, the best predictive model was chosen by species, and the other 

laboratory location spectra were used as a test set to that model.  

 

RESULTS AND DISCUSSION 

 

When comparing the raw spectral files between laboratories and machine types, two 

things were clear: raw spectra differed between spectrometer types (TANGO vs. MPA II) and 

differed according to use of the gold stamp (Figs. 18.1 and 18.2). Both of these factors caused 

problems for standardizing spectra and calibration models across laboratories. The MPA II 

spectrometer had lower raw absorbance values than the Tangos, while Tango raw spectra 

overlapped across all laboratories (Figs. 18.1 and 18.2). This seemed to be due to different 

preamplifier gain settings within the two spectrometer models, where the amplitude shift in 

spectra was corrected for in the model build of the Tango but was not in that of the MPA II. 

Regarding the effect of stamp use on spectral data, one laboratory (Santa Cruz) scanned half of 
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the sample sets with a standard gold stamp and the other half without. When no stamp was used, 

higher absorbance amplitudes were observed than were with a standard stamp, regardless of the 

species (Figs. 18.1 and 18.2). Although preprocessing can remove many artifacts of ambient 

scanning conditions, these differences may nonetheless affect model results and should be 

avoided if possible. 

These results are preliminary and sample sizes were small; hence, it is difficult to 

definitively state conclusions without further investigations and statistical testing. Further, the 

acceptable range of variability between instruments needs further investigation. Third, since the 

laboratories involved in this project are new to optimizing models, we investigated creating new 

models from each location’s scans without any preprocessing designated. Instead, each model 

was run, had outliers removed, reran as needed, optimized, and the best model was chosen. 

Model output was compared between laboratory locations and the best tested model was graphed 

(Figs. 18.3 and 18.4). Regarding differences in model building between users, preprocessing 

choices varied by user and led to differences in overall model results between laboratories, 

indicating that preprocessing techniques need to be standardized by species. For example, 

Narragansett and Beaufort laboratory users optimized Narragansett spectra without any 

preprocessing designated, whereas other users did not. While some variation in raw spectra was 

observed across laboratories, each calibration model generally identified the same samples as 

spectral outliers during model testing (i.e, youngest ages for gag and chipped otoliths samples for 

vermilion snappers). 

This was the first attempt to evaluate cross-machine and cross-user precision in spectral 

data collection and model building. Initial results indicate that scanning between machine types 

when utilizing the same scanning protocol provides consistent spectral data; however, it’s 



262 
 

important to establish calibration sets similar to reference collections that are used to maintain 

consistency in traditional ageing. Another important takeaway from this study is that consistent 

scanning methods need to be established between machines prior to the start of scanning to 

ensure that results can be combined. Finally, model building should be well thought out by all 

users for individual species, and decisions should be made jointly on which parameters and 

preprocessing should be utilized. 

 

Future discussions should include but not be limited to the following questions: 

 

1. How should spectra be analyzed if scanning methods are changed? Is there a correction 

factor? 

2. What is the threshold of acceptable variability between models? 

3. How do we handle new spectral scans while utilizing existing models? 

4. What is the minimum number of samples needed to create a model (calibration set vs. test 

set)? 

5. How does the physical size of the sample affect models (i.e, some otoliths are much 

smaller or larger than the aperture window)? 

6. How can we handle user variability in model optimization? How do we ensure we are 

using the same criteria for removing outlier samples? 

7. Should we work with other data providers to create the same preprocessing protocol prior 

to scanning? 

8. Should spectra be combined across data providers to create a single model? 
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Table 18.1. -- Model comparison output by location using established preprocessing protocols 
from previous scans (using the Panama City laboratory’s spectrometer in Seattle) 
for vermilion snapper Rhomboplites aurorubens (top) and gag Mycteroperca 
microlepis (bottom). Preprocessing methods are outlined for each species. PC = 
Panama City, LJ = La Jolla, BFT = Beaufort, NAR = Narragansett, SC = Santa 
Cruz, RMSECV = root mean square error of the cross validation, RPD = residual 
prediction deviation. 

 
Vermilion snapper 
Preprocessing method: Multiplicative Scattering Correction 
Regions of interest: 7456-4944, 4504-4000 

 PC Seattle LJ BFT NAR PC SC-all SC-Gold SC-No gold 

Rank 3 2 6 3 4 3 3 2 

R2 80.22 79.55 76.39 73.93 81.24 77.14 61.50 74.07 

RMSECV 1.06 1.05 1.12 1.18 1.00 1.10 1.03 1.21 

Bias 0.00286 0.00053 -0.34200 0.00769 0.00816  0.01130 0.02440 

RPD 2.25 2.21 2.06 1.96 2.31 2.09 1.61 1.96 
 

Gag grouper 
Preprocessing method: 1st Derivative + Vector Normalization 
Regions of interest: 7456-6400, 5504-4944, 4776-4000 

 PC Seattle LJ BFT NAR PC SC-all SC-Gold SC-No gold 

Rank 5 4 4 5 6 4 2 2 

R2 83.06 76.49 80.49 73.49 78.49 65.54 63.16 56.30 

RMSECV 0.746 0.879 0.801 0.933 0.848 1.060 1.110 1.050 

Bias 0.00689 0.01760 0.00747 0.00821 0.03450 -0.00347 0.03750 -0.05110 

RPD 2.43 2.06 2.26 1.94 2.16 1.70 1.65 1.51 
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Figure 18.1. -- Raw spectral data of vermilion snapper (Rhomboplites aurorubens) otoliths scanned at each location’s laboratory using 
two types of spectrometer: Tango (Santa Cruz, Beaufort, Narragansett, and La Jolla laboratories) and MPA II (Panama 
City [PC] laboratory). Note: Santa Cruz measured half of the samples without a gold stamp (upper level yellow 
spectra), while the other half were measured with a gold stamp (which line up with the rest of the Tango scans). 



265 
 

 

 

Figure 18.2. -- Raw spectral data of gag grouper (Mycteroperca microlepis) otoliths scanned at each location’s laboratory using two 
types of spectrometer: Tango (Santa Cruz, Beaufort, Narragansett, and La Jolla laboratories) and MPA II (Panama City 
[PC] laboratory). Note: Santa Cruz measured half of the samples without a gold stamp (upper level yellow spectra), 
while the other half were measured with a gold stamp (which line up with the rest of the Tango scans). 
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Figure 18.3. -- Vermilion snapper (Rhomboplites aurorubens) best model comparison output 
using other location scans as test sets. The best predictive model was from the 
Panama City (PC) laboratory, and the best test set was also from PC scans from 
Seattle in 2019. Model output is displayed under the graph. 
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Figure 18.4. -- Gag grouper (Mycteroperca microlepis) best model comparison output using 
other location scans as test sets. The best predictive model was from Beaufort and 
the best test set was from La Jolla. Model output is displayed under the graph. 
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ABSTRACT 

 

Fourier transform near infrared (FT-NIR) spectroscopy applied to otoliths has been used 

to predict the age of fish with comparable precision and improved efficiency relative to 

traditional, microscope-based methods. This approach requires the development of predictive 

calibration models that relate otolith spectra with fish age. However, before FT-NIR 

spectroscopy can be operationalized for production fish ageing and fisheries management, 

factors that may impact predictive skill of calibration models while maintaining efficiency must 

be investigated. The influences of calibration data set sample size (the number of otoliths that 

require traditional ageing) and sample selection methods on model predictive skill have not been 

thoroughly evaluated. Using eastern Bering Sea (EBS) walleye pollock as a case study, we 

conducted a simulation study of model predictive skill across 39 scenarios differing in selection 

methods and sample sizes. Specifically, we resampled with replacement from a subset of walleye 

pollock otoliths collected between the years of 2014-2021 (n = 2,055) and compared three 

selection methods: 1) random selection from samples where two age readers agreed on age based 

on the assumption that these ages were the most “accurate”; 2) random selection from the full 

subset of samples; and 3) selection using the Kennard-Stone algorithm to sample from the full 

domain of spectral variation. We evaluated each selection method at a range of sample sizes, 

each with 200 iterations, to determine the approach that maximizes efficiency but best represents 

the larger data set. Partial least squares regression calibration models were fitted to each data set 

and predictive skill on future, unseen data was evaluated by applying each model to a hold-out 

data set (n = 7,272) and estimating the root mean square error (RMSE) between predicted age 

and reference age for each scenario. We also evaluated two model validation approaches: cross-
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validation and external validation, and their relative ability to accurately estimate model 

performance on new data (represented by model performance on the hold-out data set). For EBS 

walleye pollock collected between 2014 and 2021, calibration sample selection using the 

Kennard-Stone algorithm resulted in the most consistent model predictive skill at sample sizes 

greater than 500 (~7% of the hold-out data set), with negligible gains over 900 (~12% of the 

hold-out data set). The random selection approach was nearly comparable in performance to 

Kennard-Stone. Our results did not support any benefit of restricting calibration samples to those 

for which two readers agreed on fish age and also suggest that model cross-validation is a good 

indicator of future performance on unseen data when the Kennard-Stone selection approach is 

utilized but tended to overpredict performance when the random selection approach was 

employed. External validation tended to over-predict future predictive performance on unseen 

data for both selection approaches, especially when the external validation data set was small. 

Future work could explore the optimal sample size for an external validation data set that would 

better quantify model performance on new data. This case study outlines calibration model 

optimization techniques and approaches that can be universally applied to new species and data 

sets. 
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INTRODUCTION 

 

Information on the age of fish is an essential component of fisheries research and hence 

management decision-making. Accurate age data allow for a more robust understanding of 

population dynamics and contribute to our ability to conserve and manage species effectively 

(Campana 2001, Lai and Gunderson 1987). Fish age data are essential when applying age-

structured methods of stock assessment, as they inform estimates of the size of population 

cohorts as well as important life-history parameters related to growth, mortality, maturity, and 

longevity.  

At the Alaska Fisheries Science Center alone, over 30,000 age estimates from over 22 

species of fish are generated annually for inclusion in stock assessment (Lambert et al. 

unpublished report, Helser et al. this volume-a), representing an enormous time and monetary 

investment for processing and traditional age estimation. Fourier transform near infrared (FT-

NIR) spectroscopy has been shown to be an effective method for predicting the age of numerous 

fish taxa with improved efficiency relative to traditional methods (Rigby et al. 2014, Wedding et 

al. 2014, Rigby et al. 2016, Helser et al. 2019a, Helser et al. 2019b, Arrington et al. 2022, Healy 

et al. 2021, Passerotti et al. 2020a, Passerotti et al. 2020b, Wright et al. 2021, Passerotti et al. 

2022, Benson et al. 2023). 

The eastern Bering Sea (EBS) walleye pollock (Gadus chalcogrammus) fishery is one of 

the largest fisheries in the Alaska region (1.2 million t, on average, since the late 1970s) and 

accounts for roughly a third of all production age estimates. The FT-NIR spectroscopy approach 

has predicted the age of EBS walleye pollock with comparable precision to traditional methods 

and improved efficiency (Helser et al. 2019b, Benson et al. 2023). Helser et al. (2019b) found 
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that 75% of FT-NIR age estimates for EBS walleye pollock collected during 2016 and 2017 from 

partial least squares regression (PLS) models were equivalent to traditional production integer 

ages. In contrast, the traditional age reading method results in only 68% agreement between 

reader and tester ages. Benson et al. (2023) found that for EBS walleye pollock collected 

between 2014 and 2018, 81% of FT-NIR age estimates from multimodal convolutional neural 

network models (MMCNN) were the same as traditional production ages, in contrast to only 

73% agreement between reader and tester in the traditional method. Both PLS and MMCNN 

resulted in predicted ages that had less bias for most age classes than age estimates compared 

between two age readers in traditional methods. 

However, despite promising proof-of-concept studies, the FT-NIR method of fish ageing 

has yet to be formally used for life history studies or for production ages included in stock 

assessments. Best practices still need to be developed to understand methodological impacts on 

the predictive skill of FT-NIR models when applied to future data. Here, we develop a 

simulation framework to explore the influence of calibration data set sample size and selection 

method on PLS model consistency and predictive accuracy. We define consistency as the range 

in predictive performance of calibration models on future data. We define predictive accuracy as 

how well a calibration model predicts future data. Both consistency and accuracy are evaluated 

based on root mean square error (RMSE) between model predictions and traditionally estimated 

age. We address the following three questions: 

 

• Question 1: What are the best methods for selecting a calibration data set to optimize 

performance on new data? 
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• Question 2: What is the minimum sample size required for a consistent calibration 

data set? 

• Question 3: What are the best methods for validating a calibration model to determine 

how it will perform on new data? 

 

METHODS 

 

Walleye pollock otoliths included in this study were collected on fishery-independent 

EBS bottom trawl surveys conducted by the Alaska Fisheries Science Center between the years 

2014 and 2021. Otoliths were stored in glycerin-thymol solution after extraction at sea. 

Traditional age estimates for all samples included in this study (n = 9,327) were determined 

microscopically by counting pairs of annual bands corresponding to the age of the fish using one 

paired sagittal otolith (Matta and Kimura 2012). Two age readers independently read a randomly 

selected 20% subset of specimens to evaluate the precision and bias of traditional methods. 

Traditional age reading methods for walleye pollock are destructive, so the other otolith was 

used for spectroscopic evaluation. 

 

Spectroscopy 

 

Spectral absorbance data were collected on either a Bruker TANGO-R FT-NIR 

spectrometer (Bruker Optics, Ettlingen, Germany) or a Bruker MPA II FT-NIR spectrometer 

with an integrating sphere. Whole, unaltered otoliths were removed from their vials and excess 

glycerin-thymol was blotted off using Kimwipes (Kimtech Science). The otolith was then placed 
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on the sampling window distal side up in a 0° orientation and covered with a gold transflectance 

cap. Absorbance data were acquired at 16 cm-1 resolution with 64 averaged scans between the 

wavenumbers 11,500 and 4,000 cm-1.  

 

Analysis 

 
We conducted data analysis in R (version 4.3.0, R Foundation for Statistical Computing, 

Vienna, Austria, see https://www.Rproject.org), with chemometric package mdatools (version 

0.14.0, Kucheryavskiy (2020a), https://github.com/svkucheryavski/mdatools). Raw spectral data 

were pre-processed with mean centering and Savitzky-Golay smoothing (first derivative, second 

order polynomial, 17-points; Savitzky and Golay 1964), to remove the offset between 

instruments while preserving the chemical signal of interest (Benson et al. 2023, Luthria et al. 

2011). 

We removed outliers based on orthogonal distances (Q) and score distances (Hotelling’s 

T2). This was done by calculating critical limits using a data-driven approach assuming a joint 

distance that follows a chi-squared distribution (Rodionova and Pomeranstev 2020). Values that 

fell outside a significance level of 0.01 were considered outliers and removed from the data set 

(n = 100). We split the remaining data into two data sets. One data set (hereinafter referred to as 

the double-read data set) had all specimens that were read by two age readers (n = 2,055), and 

the other data set had just a single read age (hereinafter referred to as the hold-out data set) (n = 

7,272) (Fig. 19.1). 

We then evaluated three methods for selecting calibration models from the double-read 

data set at a range of sample sizes: 1) the “agree ages” approach – we used just the spectra from 

otoliths where both the reader and tester agreed on the age (n = 1,386) – this was based on the 
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assumption that these otoliths had the least error in reference ages, 2) the “random selection” 

approach - we randomly selected a subset of data for the calibration model from the full double-

read data set; and 3) the “Kennard-Stone algorithm” approach - we used the Kennard-Stone 

algorithm (Ferreira et al. 2021, Kennard and Stone 1969) to select representative samples that 

encompassed the full range of spectral variation in the double-read data set. When selecting a 

subset of data for a calibration sample, there are many possible combinations depending on the 

total sample size. Some combinations may, based on random chance, be better or worse at 

predicting future samples than others. By utilizing a simulation-based approach with n = 200 

repetitions, we were able to simulate sampling from a larger population and generate a 

distribution of possible results. 

 

Agree ages approach 

To evaluate the agree ages approach, we resampled with replacement from the specimens 

where the reader and tester agreed on age (1,386 samples out of the 2,055 samples in the double-

read data set) at sample sizes from n = 100 to the maximum possible, n = 1,386, at intervals of 

100. We resampled 200 data sets per calibration sample size. Each had a paired external 

validation set that included any samples from the double-read data set not included in each 

calibration data set. 

 

Random selection approach 

To evaluate the random selection approach for selecting calibration samples, we 

resampled with replacement from the full double-read data set (n = 2,055) at sample sizes from n 

= 100 to n = 1,386 to be equivalent to the agree ages approach. This was to eliminate variation in 
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model performance due to different calibration sample sizes, and resulted in 200 simulated data 

sets per calibration sample size, each with a paired external validation data set that included any 

samples from the double-read data set not included in each calibration data set (Fig. 19.1). 

 
Kennard-stone algorithm approach 

To evaluate the Kennard-Stone algorithm for selecting calibration samples, we resampled 

with replacement from the full double-read data set (n = 2,055) to generate 200 simulated data 

sets. We then applied the Kennard-Stone algorithm to each simulated data set to select 

calibration sets with sample sizes from n = 100 to n = 1,386 to be equivalent to the agree ages 

and random selection approaches. This resulted in 200 simulated calibration sets per calibration 

sample size, each with a paired external validation set that included any samples from the 

double-read data set not included in each calibration data set (Fig. 19.1). 

 
Evaluating model performance 

To evaluate model performance in each scenario, we then fitted PLS models (Wold et al. 

1984, Helser et al. 2019b) to each calibration set selected via each method at each sample size. 

To evaluate and compare model performance on new data, we applied each model to predict ages 

for the hold-out data set (n = 7,272) (Fig. 19.1). Model predictive skill was summarized by 

calculating the root mean square error (RMSE) of predicted ages relative to reference ages for 

each iteration in each scenario. This resulted in 200 RMSE values per method, per sample size.  

In most proof-of-concept studies, a hold-out data set with such a large number of samples 

(n = 7,272 for EBS walleye pollock) with traditionally estimated reference ages is not typical. To 

simulate model evaluation methods more typical in a proof-of-concept study, we evaluated the 

accuracy of external validation and cross-validation methods for estimating future performance 
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on new data (represented by model performance on the hold-out data set) (Fig. 19.1). To evaluate 

external validation methods, we applied the same PLS models to each paired external validation 

set and calculated the RMSE of the predicted ages versus traditionally estimated reference ages. 

This resulted in 200 RMSE values per method, per sample size. PLS models were also tested 

through cross-validation by fitting models using each data set iteratively. In each iteration, 20 

samples were systematically left out and parameter estimates were used to estimate the age of the 

left-out samples. The mean error of all predictions versus reference ages was calculated as the 

RMSE of cross-validation. This resulted in 200 RMSE values per method, per sample size. 

 

RESULTS AND DISCUSSION 

 

The results of this simulation suggest that model predictive accuracy (represented by 

RMSE) can vary depending on what samples are included in the model calibration set, the 

selection approach utilized, and the sample size. Additionally, it is important to give model 

validation approaches careful consideration as they can over-estimate model predictive 

performance on new data. 

When all calibration sets were used to predict fish age for the hold-out data set (n = 

7,272) to represent predictive skill on new data, the best and most consistent model performance 

was achieved using the Kennard-Stone algorithm at the highest sample size tested (n = 1,386) 

(Fig. 19.2). The most variability in model performance was for sample sizes less than 500, 

suggesting that more traditional ages are required to reliably select a representative sample of the 

population. However, there were negligible gains over 900 samples, suggesting that this may be 

a good target number for traditionally estimated reference ages for EBS walleye pollock.  



280 
 

Although there was near full overlap among the Kennard-Stone and the other two 

selection methods’ RMSE values, the random and agree ages approaches had larger ranges in 

RMSE that encompassed models with poorer predictive performance than the Kennard-Stone 

approach (Fig. 19.2). Of the three methods, the agree ages approach resulted in a range that 

encompassed the poorest models at calibration sample sizes over 500 (Fig. 19.2). These results 

do not support a benefit to restricting calibration samples to those with agreement between the 

primary age reader and the test reader. Though random selection resulted in some models with 

slightly poorer performance than the Kennard-Stone algorithm, they had nearly comparable 

RMSE values and both methods may be useful in different contexts (Fig. 19.2). When selecting a 

subset of samples for a spectroscopy study, random selection of samples for traditional ageing 

may be most appropriate if spectra are not yet collected, since the Kennard-Stone algorithm 

requires information about spectral variation. However, in a scenario where spectra are available 

that do not yet have reference ages, the Kennard-Stone selection method can be used to optimize 

the samples to process for traditional age estimation. 

Finally, model validation techniques are often used to estimate the future performance of 

a model on new data in a proof-of-concept study where data are limited. We found that cross-

validation over-estimated predictive skill for the random selection approach, showing better 

RMSE than when the same calibration models were applied to the hold-out data set (Fig. 19.3a). 

However, cross-validation adequately represented the predictive skill for the Kennard-Stone 

selection approach and resulted in a conservative estimate of model predictive skill, except for 

the highest two sample sizes (Fig. 19.3b). External validation (using paired validation data sets) 

tended to overestimate predictive skill for the random approach at sample sizes greater than 300 

(Fig. 19.4a). It also tended to overestimate predictive skill for the Kennard-Stone selection 
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approach at sample sizes greater than 200 (Fig. 19.4b). In a data-limited scenario, if using the 

Kennard-Stone algorithm for selecting calibration samples, our recommendation would be to use 

cross-validation to estimate predictive performance on future, unseen data. If using random 

selection, future work could explore the adequate sample size of an external validation data set 

that would result in better estimates of performance on new data. Anecdotally for these results, 

when ~1,700-1,900 samples are included in the external validation relative to 100-300 samples 

in the calibration, the external validation better estimated “actual” performance as represented by 

predictive skill on the hold-out data set (n = 7,272) (Fig. 19.4a,b). However, calibration models 

fitted on just 100-300 samples were also highly variable and inconsistent in their predictive 

performance on future, unseen data (Fig. 19.2). To more accurately estimate the future predictive 

skill of calibration models fitted on an optimal number of 500-900 samples, a larger paired 

external validation data set of spectra with traditional ages would likely be required than was 

available in our double-read data set (n = 2,055) (Fig. 19.1).  

This simulation utilized EBS walleye pollock for a case study, yet the simulation 

framework developed in the study is flexible and can be applied in other contexts. Findings from 

this study may be generalizable across species. Recommendations to use the Kennard-Stone 

approach or random selection approach for calibration sample selection are likely broadly 

applicable. Similarly, our results highlight important considerations for validation methods that 

accurately estimate a model’s future performance on new data. We recommend building from 

this framework to explore best practices on an application-specific basis since optimal calibration 

sample sizes may vary by species and modeling approach (e.g., MMCNN). A better 

understanding of these best practices, such as the impact of calibration sample size and selection 
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methods on PLS model consistency and predictive accuracy for any candidate species, is 

important for the successful use of FT-NIR spectroscopy for production fish ageing.  
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Figure 19.1. -- Schematic of study design. The full data set including all traditionally aged 
eastern Bering Sea walleye pollock Gadus chalcogrammus (n = 9,327) from 2014 
to 2021 was split into a “double-read data set” with all samples that had a reader 
and tester age (n = 2,055), and a “hold-out” data set with all other samples that 
had just one traditionally estimated age (n = 7,272). The double-read data set was 
used for comparing calibration data set sample size and selection methods so that 
the agree ages selection approach, which required that two age readers agreed on 
age, could be compared to random selection and the Kennard-Stone algorithm. 
The hold-out data set was used to represent model performance on future, unseen 
data. The hold-out data set was kept unchanged so that calibration models could 
be compared against a comparable benchmark. Two typical validation approaches 
- external validation and cross-validation - were compared in their ability to 
estimate future model performance on new, unseen data (represented by hold-out 
data set). Above, “cal” represents calibration and “val” validation.  
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Figure 19.2. -- Violin plots (kernel density) comparing root mean square errors among the three 
calibration selection approaches to predict ages for the hold-out data set (n = 
7,272). This is shown for calibration sample sizes 100-1,386 at intervals of 100. 
Each has 200 iterations. 
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Figure 19.3. -- Violin plots (kernel density) comparing estimated model predictive skill (root 
mean square error) from model cross-validation versus actual performance on 
future, unseen data represented by the hold-out data set for a) the random 
selection approach, and b) the Kennard-Stone algorithm selection approach. 
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Figure 19.4. -- Violin plots (kernel density) comparing estimated model predictive skill (root 
mean square error) from external validation (paired validation sets) versus actual 
performance on future, unseen data represented by the hold-out data set for a) the 
random selection approach, and b) the Kennard-Stone algorithm selection 
approach. 
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INTRODUCTION 

 

Fourier transform near infrared (FT-NIR) spectra have been recently discovered to be 

informative in age estimation of many species of fishes (e.g., Helser et al. 2019a, Robins et al. 

2015, Wedding et al. 2014). To take full advantage of this new data stream, a well-designed and 

scalable database is useful for managing the data collection process and for creating a searchable 

clearinghouse of spectral data. The Alaska Fisheries Science Center (AFSC) Age and Growth 

Program (AGP) uses a relational SQL Server database called AGE3 to house specimen and age 

data and it has been expanded to include FT-NIR data. As of this writing, the AGE3 database 

houses specimen data for over two million fish, over one million traditional ages, and over 

100,000 FT-NIR spectra. 

Fish specimens come to the AGP from survey and fishery collections that have already 

been through a quality control process and have unique fish identifiers. Survey collections have a 

unique combination of vessel code, cruise number, species, and specimen number. Fishery 

collections are given unique barcodes. With either combination of identifiers, we can relate to 

catch data, such as the date of collection and latitude and longitude. 

 

DATABASE DESIGN AND ARCHITECTURE 

 

The AGE3 database is a relational database that has data objects that reflect physical 

objects. For example, the “Fish” data object or table contains attributes directly relating to fish 

specimens, such as fork length, sex, and body weight (Fig. 20.1). Another data object called 

“Age structures” is related to Fish via a primary key-foreign key relationship and contains 
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attributes related to the structure such as structure type (otolith, vertebra, scales, etc.), structure 

label information, and structure storage location. FT-NIR data are collected on parts of fish and 

not the entire fish, so the “NIR scans” object is related to the Age structures table. In this way we 

can spectrometrically interrogate many aspects of the fish without duplicating attributes such as 

fish length and weight and while maintaining data integrity. The AGE3 database stores the paths 

to the spectral files on a network share and metadata describing the conditions of the structure 

scanned. The database also stores information relating to instrument settings and quality control 

notes and changes. 

The database consists of a SQL Server 2016 back end housed in the AFSC server space. 

It is accessible with Windows Authentication, so users do not need to go through an additional 

login procedure after logging in to their computer workstation. The database front ends are a 

custom Python/Qt interface, several Microsoft Access front ends, and may be queried directly 

with code and an ODBC connection. The database structure and user access are limited to set 

processes so it is not possible for users to inadvertently change data that are outside their 

purview. 

 

SPECTRUM COLLECTION 

 

An important aspect of the collection process is creating unique spectrum file names. 

This is accomplished in the AGE3 database by beginning with fish specimen data already in the 

database and tracking the number of times a fish structure has been scanned. Data sessions are 

created and the structures to be scanned are added to it by a data manager. Scripts in the database 

interface check the number of times a structure has been scanned to ensure data integrity. Once 
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the session is set up and samples are available, then it is ready for scanning. The data manager 

writes a description of the sample selection process and the treatment involved with each data 

session (Fig. 20.2). 

Once a session is ready, a scan form is opened by the NIR operator (Fig. 20.3). The scan 

form is pre-filled with specimen numbers or barcodes of the samples ready to be scanned. The 

NIR operator records sample conditions such as broken, crystallized, structure side, percent 

affected, sample weight and any other comments pertaining to the sample, and then pastes the 

database-generated spectrum file name into the name field in the Bruker Opus software. Opus 

scans the structure and generates the spectrum file in a temporary network location to which all 

AGP users have read/write access. The AGE3 scan form locks completed records one by one as 

the operator clicks the save button and checks that the spectrum file is generated in the expected 

file location. 

Once all spectra in a session are collected, the NIR operator checks their data and marks 

the session as complete. This automatically generates an email notification to the data manager 

that a session is ready for QA/QC. After quality control, the data manager executes a script that 

moves all spectrum files in a session to a permanent archival location with read-only access. 

 

DATA CLEARINGHOUSE 

 

Archived NIR data can be retrieved by querying all available data in the AGE3 database. 

Data analysts can search with many criteria, since all related metadata are stored in the database 

(Fig. 20.4). A Microsoft Access front end has common criteria preset into a data selection form. 

This can build a query that can be further modified to the specific needs of the analyst. A script 
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in the front end copies all selected spectra and related metadata from the archive library to the 

destination of choice. 
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Figure 20.1. -- A simplified table structure of the Alaska Fisheries Science Center AGE3 
database showing entities and attributes, primary keys and foreign keys for 
collection data, fish data, and near infrared (NIR) spectra. 
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Figure 20.2. -- The AGE3 data session management form. This form displays metadata relating to near infrared (NIR) spectra in the 
active collection process and gives NIR operators access to in-process data sessions. 
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Figure 20.3. -- The near infrared (NIR) scan form for a fishery collection in AGE3. NIR operators enter otolith characteristics during 
the scanning process and this form creates the Scan Name, which is copied to Opus to create the spectrum file name. 
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Figure 20.4. -- The spectra file export form is a clearinghouse of spectral data. Analysts can filter data sessions by species, status, 
project, year, type, and region, then select or exclude specimens based on otolith characteristics. With the script in this 
form, spectra and metadata will be copied from the archived library to the analyst’s chosen file destination. 
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ABSTRACT 

 

Fourier transform near infrared (FT-NIR) spectroscopy of otoliths is emerging as a highly 

efficient fish age estimation alternative to the labor intensive, time-consuming traditional 

microscope-based approach (TMA). Within the National Oceanic and Atmospheric 

Administration (NOAA) National Marine Fisheries Service (Fisheries), seven biological 

laboratories are engaged in production ageing that provides critical data for stock assessments in 

support of managing the nation’s fishery resources. Research by Alaska Fisheries Science Center 

(AFSC) scientists demonstrated the potential utility of FT-NIR spectroscopy for ageing eastern 

Bering Sea (EBS) walleye pollock, which led to NOAA Fisheries funding a 5-year strategic 

initiative in 2020 entitled “A revolutionary approach for improving age determination efficiency 

in fish using Fourier transform near infrared (FT-NIR) spectroscopy.” The roadmap toward 

operationalizing the FT-NIR spectroscopy ageing technology across science centers was 

envisioned as encompassing three major related tasks: (1) application development, (2) 

application implementation, and (3) stock assessment integration. Within this framework, 

examples of successful fish ageing applications of FT-NIR spectroscopy have been documented 

for numerous species and regions over the last several years by the Strategic Initiative 

Development Team (SIDT). In a few regions, headway has also been made in application 

implementation through simulation studies for best practices and even stock assessment 

integration by evaluating stock assessment model sensitivity to data products generated using 

FT-NIR spectroscopy. However, before such innovative methods attain a technical readiness 

level (TRL) for transition, we must begin to focus on adaptation of FT-NIR spectroscopy 

methods into existing TMA operations that result in a smooth delivery of data streams with 
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essential quality control processes that generate consistent and reliable data products. This 

chapter describes in detail the end-to-end integration of FT-NIR spectroscopy methods for age 

estimation envisioned for the production ageing process at the AFSC. In this case study, we 

employ a predictive model for EBS walleye pollock, leveraging over 9,000 observations 

spanning from 2014 to 2018, to investigate the envisioned process for generating future age 

predictions. 
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INTRODUCTION 

 

The central principle governing fish age determination based on the growth patterns 

visible in otoliths has changed little over the last century. While ageing fish using scales can be 

documented as far back as the early 1700s, Johannes Reibisch was the first to describe a protocol 

for ageing fish using otoliths in 1899 (Jackson 2005). Microscopic counting of the annual growth 

zones in otoliths was the foundation of the ageing method then and is still the basis of age 

estimation today. With the exception of advancements in microscopy and otolith preprocessing 

techniques, the standard practice today remains the visual examination and enumeration of 

annual banding patterns. Ageing laboratories worldwide have improved age estimation methods 

through various otolith processing techniques to enhance the microstructure for visual 

interpretation. These techniques involve clearing whole otoliths in various solutions or sectioning 

them and then applying burning or staining processes to improve contrast between growth zones. 

Another common practice is “double reading”, wherein the same otolith is evaluated by a second 

(or even third) analyst to estimate precision or repeatability of age estimates. Hence, the age 

reading process aligns with the scientific method and allows for the application of statistical 

methods to estimate age reading precision. McBride (2015), Campana (2001), and others have 

discussed statistical techniques that can be used to assess age reading precision. Generating ages 

for stock assessments follows the scientific method provided that ages are validated, age 

determination criteria are consistently applied, and independent double readings are conducted. 

Campana (2001) provides a thorough treatise of age validation methods along with measures of 

statistical precision. The entire process of generating ages can be expensive, time consuming, 
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and labor intensive, especially for species with long lifespans or complex otolith processing 

methods. 

In recent decades, efforts have been made to increase the efficiency and improve 

repeatability of age determination with machine-based technologies. These technologies have 

utilized otolith morphometrics (Pilling et al. 2007, Fablet et al. 2009, Mahe et al. 2016), image 

analysis (Nasreddine et al. 2013), or both (Troadec and Benzinou 2002, Fablet and Le Josse 

2005), with variable levels of success. When a large number of age estimates is needed for stock 

assessments, the goal is to increase efficiency without hindering age accuracy or precision 

(Fablet and Le Josse 2005). Although a number of alternative approaches have been explored for 

use in age estimation, none have been widely adopted as a large-scale production tool for age 

determination. Following the lead of several promising studies in Australia (Wedding et al. 2014, 

Robins et al. 2015), scientists at the AFSC have shown that Fourier transform near infrared (FT-

NIR) spectroscopy applied to walleye pollock (Gadus chalcogrammus) otoliths (Helser et al. 

2019b) holds promise of high-throughput fish ageing. FT-NIR spectroscopy is used in a wide 

variety of industries including pharmaceutical, chemical, petrochemical, agricultural, and dairy 

manufacturing. FT-NIR spectroscopy is a vibrational spectroscopy technique that functions by 

exciting covalent bonds (O-H, C=O, C-H, C-N, and N-H) at the molecular level using NIR light 

and measuring absorbance in the wavenumber range 4,000 to 12,500 cm−1. The light’s 

interaction with the sample results in measurable vibrational frequencies represented by spectral 

signatures associated with molecular combinations and overtones that make up compounds in the 

sample (Conzen 2014, Siesler et al. 2002). In otoliths, these spectral signatures correlate well 

with age, enabling the establishment of a mathematical relationship between absorbance and fish 

age.  
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With the promise for improving efficiency and repeatability of generating age data for 

stock assessments, the National Oceanic and Atmospheric Administration (NOAA) National 

Marine Fisheries Service (Fisheries) has undertaken a nationally coordinated research-and-

development effort across seven biological laboratories to integrate FT-NIR spectroscopy 

technology into the fish age determination enterprise (Helser et al. 2019a). NOAA Fisheries 

funded a 5-year strategic initiative entitled “A revolutionary approach for improving age 

determination efficiency in fish using FT-NIR spectroscopy” in 2020. With the participation of 

national and international scientists and industry experts in FT-NIR spectroscopy, a framework 

toward operationalizing the FT-NIR spectroscopy ageing technology across fisheries science 

centers emerged from a three-day planning workshop in April 2019 (Helser et al. 2019a). The 

Strategic Initiative Development Team (SIDT) envisioned a “roadmap” consisting of three 

related and overlapping tasks: (1) application development, (2) application implementation, and 

(3) stock assessment integration (Helser et al. 2019a). Application development focused on the 

exploration of the technology to generate reliable NIR spectra (good signal-to-noise) from 

otoliths and determine whether a strong significant mathematical relationship between otolith 

spectra and fish ages of different species and in different regions of the country could be 

established. In application implementation, the goals were to investigate the delivery of new data 

generated by predictive models, define and evaluate model performance, establish protocols for 

data processing and quality control, and develop a manual of best practices to guide decisions 

related to sample size, sampling distributions, ageing precision, and performance measures. 

While not the end point, the stock assessment integration objective sought to evaluate the 

sensitivity of population model output of critical management outcomes and benchmarks from 

incorporating FT-NIR spectroscopy data. Taken together, each element of the hierarchy builds 
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upon the previous tier with “discovery switch-backs” helping to refine and improve the technical 

knowledge of the system. 

Collectively, the NOAA Fisheries ageing laboratories have made reasonably good 

progress on application development, despite significant delays and setbacks due to the 2020-

2022 global pandemic. The science underpinning the use of FT-NIR spectroscopy for age 

prediction is demonstrated by a number of published studies across fish taxa and regions in the 

U.S. (Helser et al. 2019a, Helser et al. 2019b, Healy et al. 2021, Arrington et al. 2022, Passerotti 

et al. 2020b, Passerotti et al. 2022, Benson et al. 2023), with others in Australia (Wedding et al. 

2014, Rigby et al. 2016, Wright et al. 2021), and more are yet to be published (including a 

number of studies described in these proceedings). Although work is ongoing or still needed 

across all science centers, these efforts hold great promise for improving efficiency and 

repeatability of generating age data for stock assessments using FT-NIR spectroscopy. At the 

AFSC, simulation studies are underway to evaluate best practices, and two case studies for 

eastern Bering Sea (EBS) walleye pollock and Pacific cod (G. macrocephalus) demonstrate the 

sensitivity of the stock assessment models to using FT-NIR spectroscopy-generated age 

compositions compared to the traditional method of ageing (TMA). The fourth element, which 

was not identified in the planning document, relates to the technical readiness level (TRL) and 

full transition of the new method into existing operations that result in a smooth end-to-end 

pipeline with essential quality control processes that generate consistent and reliable data. This 

chapter describes the end-to-end integration of FT-NIR spectroscopy methods for age estimation 

envisioned within the production ageing framework at the AFSC’s Age and Growth Program 

(AGP). 
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THE UNIFIED SYSTEM 

 

 The AFSC conducts production ageing on over 22 species of fish in Alaskan waters, 

generating on average between 30,000 and 40,000 ages per year for inclusion in stock 

assessments1. Technical readiness and transition of FT-NIR spectroscopy-based age estimation 

may occur a few species at a time and may not be applicable for all species. In the FT-NIR 

spectroscopy method, ages are generated from a mathematical relationship between otolith 

spectra and associated TMA ages using statistical methods such as principal component 

regression (PCR) or partial least squares regression (PLS) to predict age using a small set of 

intermediate linear latent variables (Chen and Wang 2001). For species in which the TMA 

precision is very low, FT-NIR spectroscopy may simply not be possible without propagating 

excess error into the model age predictions. The impact of ageing imprecision and bias on FT-

NIR-based age predictions is currently being investigated using simulation analysis (See 

Arrington et al. this volume-b). Walleye pollock and Pacific cod account for approximately 50% 

of the AGP annual production demand. FT-NIR spectroscopy models for EBS walleye pollock 

and Pacific cod, which have well developed age-structured stock assessment models and 

reasonable TMA ageing precision, have shown promising results (Helser et al. 2019b, Healy et 

al. 2021, Benson et al. 2023) and most likely will represent the first stocks to reach a TRL for 

transition. Moreover, we have advanced from using typical chemometric modeling techniques 

such as PCR or PLS to deep machine learning, specifically multimodal convolutional neural 

networks (MMCNN), to improve age prediction for these species (Benson et al. 2023). Deep 

                                                 
 
1 G. Lambert et al., unpublished report. Importance of age data collection for stock assessments: A U.S. national 
perspective. Report from the Otolith Sample Size Working Group. NOAA Fisheries. 
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machine learning provides a number of advantages over classical linear methods by dealing with 

system nonlinearity, automatic feature extraction from spectra and metadata, and error 

quantification when used within a Bayesian framework. Regardless of which analytical tool is 

used to predict ages, what is clear is that both TMA and FT-NIR spectroscopy age estimation 

approaches have to operate in parallel in a unified process. The current TMA production process 

needs to adapt FT-NIR spectroscopy for species that have reached a sufficient TRL for transition 

because both, to a greater or lesser extent, rely on reference ages (TMA) to evaluate proper 

system functioning. For FT-NIR spectroscopy, reference ages are needed for evaluating 

predictive model performance and for model updating, if necessary. Model updating is another 

area of research that is being investigated by scientists at the AFSC. Model updating or 

recalibration may be required in situations where there is unseen variability in the spectral or 

reference data or when the system response function changes due to instrumentation (Wise and 

Roginski 2015). 

Below we describe an augmented process for integrating the FT-NIR spectroscopy 

ageing method into the existing AGP workflow system. This chapter uses EBS walleye pollock 

as an illustrative example and draws upon a number of other chapters in this volume to illustrate 

an emerging vision of transitioning this species into an end-to-end parallel process within an 

existing fish ageing enterprise. The scenario presented in this paper is based on an already 

validated age prediction model for walleye pollock using over 9,000 otolith spectra and TMA 

ages from 2014-2018 EBS bottom trawl surveys. This MMCNN model was published by Benson 

et al. (2023) and will not be described in detail here. Rather, our intent is to predict new unseen 

ages from this base model and otolith scans collected during the 2019 and 2021 EBS bottom 
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trawl surveys and highlight the process flow, data pipelines as well as data quality control 

measures. 

We illustrate a simplified schematic of the process (Fig. 21.1) through which the 2019 

and 2021 pollock sample otoliths and data streams flow. The large rectangle on the left side of 

the schematic, identified as microscopic ageing in which the goal is to maintain consistency in 

the reference data, represents the established TMA process in the AGP (more details of the 

AGP’s database design, and how FT-NIR data will be incorporated into the workflow, can be 

found in Short this volume). The TMA process is discussed in Section 1 below, with further 

details found in Matta et al. (this volume-a). The entirely new parallel process of FT-NIR 

spectroscopy age prediction is represented by diamonds and the workflow represented by arrows 

on the right side of Figure 21.1. The associated QC tools applied at each stage to evaluate the 

reliability of spectral data collection are described in Section 2 below, with further details in 

Goldstein et al. (this volume-a). Following the solid arrows, the data stream enters the FT-NIR 

spectroscopy-based model performance evaluation component of the process. This is described 

in Section 3 below. Under acceptable performance (solid arrow), age predictions move to final 

reporting, library storage, and sharing with end users. The dotted arrows illustrate the alternative 

flow when new variability in the data does not conform to expected model performance and 

there is a need for model updating. Some model updating strategies are presented and discussed 

in Section 4 below. 

 

1. TMA Age Estimation and Data Quality Control 

 The traditional age determination process within the AGP, including quality control (QC) 

procedures, is well established (Kimura and Anderl 2005, Matta and Kimura 2012, Matta et al. 
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this volume-a). Walleye pollock age determination is based on mixed methods, primarily 

consisting of surface ageing (generally younger fish with clearer annuli) and sectioning-and-

toasting (Matta and Kimura 2012). TMA QC metrics used by the AGP are illustrated for the 

2014 to 2018 walleye pollock age data from which the MMCNN model was developed (Fig. 

21.2). Total collection size was over 9,000 analyzed otoliths, with slightly more than 2,100 

double reads to give a percent agreement (±0 years) of about 67%, average percent error (APE) 

of 3.05%, and Chang’s coefficient of variation (CV) of 4.32%. Relative bias between age readers 

was low (not significant based on tests of symmetry) and a robust regression of reader on tester 

age gave r2 = 0.9 and RMSE = 1.0 years. This indicates that 67% or 95% of ages from the read 

age were within 1 or 2 years of the test age, respectively. 

When applying the published age determination criteria (Matta and Kimura 2012) for 

walleye pollock and conducting the usual 20% random subsample for re-analysis, QC metrics of 

precision for double-read TMA data from the 2019 and 2021 EBS BTS showed similar results, 

except that the samples consisted of fewer older fish than compared to the 2014-2018 sample 

(Matta et al. this volume-a). TMA double reads in 2021 showed a slightly higher CV than 

expected, with a slight relative bias. It should be noted that while existing TMA procedures use a 

20% random subsample, efforts are underway to evaluate whether a lower percentage of double 

reads, such as 10%, could be used to evaluate reference age consistency in the parallel FT-NIR 

spectroscopy-based ageing process. Crude estimates of walleye pollock TMA ageing efficiency 

derived from empirical data found that approximately 35 ages could be produced per person per 

day1, although these are likely underestimates of productivity. Enhancements in the AGP AGE3 

database will allow better tracking of time-flow statistics for future evaluation. With better time-

flow statistics for both the TMA and FT-NIR spectroscopy ageing processes, we hope to conduct 
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a thorough cost-benefit analysis to evaluate new technology utilization, efficiency, and its effect 

on program resources. 

 

2. FT-NIR Spectral Data Acquisition and Quality Control 

 Quality of spectral data collection from otoliths begins with a well-designed relational 

database that has a user-friendly interface and an architecture that collects and stores unique 

spectral files, executes QA/QC tools to evaluate spectral reliability, and archives spectra to a 

permanent location. The AGP AGE3 database has been enhanced to accommodate the new 

spectral data stream and details can be found in Short (this volume). This section will describe 

the flow of spectral data acquisition and the QC measures that have been implemented to ensure 

reliability, with additional details described in Goldstein et al. (this volume-a). As shown in 

Figure 21.1, key personnel at this stage of the process include instrument operators (who are also 

production agers) and a lab manager who is responsible for quality checking each scan session 

and warehousing the data in a permanent library. The operator shares responsibility for the 

quality of spectral data because standardized sample presentation methods for each species have 

been developed and documented in a user manual. 

The AGP FT-NIR spectroscopy laboratory currently runs two Bruker MPA II FT-NIR 

instruments (illustrated in Fig. 21.1). The production ageing needs of survey (RACE) and 

observer (FMA) and special collections are entered in a web-based application (AGPS) and are 

prioritized on the basis of demand and capacity of AGP resources and stock assessment 

priorities. Similarly to the age reading sheets created during the TMA ageing process, a data 

session for otolith scanning is created by the database manager to identify specimens to be 

scanned during that session. From a typical annual RACE EBS bottom trawl survey collection 
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for walleye pollock, there may be approximately 1,500 to 1,600 otoliths, so the data manager 

will create six scan sessions with approximately 280 otoliths (two boxes) each. An operator will 

select a session, physically locate the associated otolith boxes, open the session form on the 

AGE3 interface, and begin the scanning process (Short this volume). The scan session interface 

is pre-populated with specimen number or barcodes as well as metadata associated with the 

particular biological structure (otolith, etc.), including vessel, region, fish length, and other fields 

related to the specimen. Several QC tools have been built into the complete data pipeline 

process. The first, real-time and integral to the AGE3 process, is that the operator can compare 

the recorded fish length with that predicted from a large-sample PLS model that relates otolith 

spectra to fish length after each scan. Large departures between observed and predicted fish 

length can aid in identifying scan anomalies, including misplacement on the instrument sample 

window, incorrect sample identification number, or other mistakes that might otherwise go 

undetected. Additional QC tools have been developed to monitor scan data reliability, including 

i) generating absorbance profiles for each otolith, ii) generating absorbance profiles at the end of 

the session to check for anomalies, and iii) running a script that displays PCA plots, Hotelling’s 

T2, and Q-residuals to identify gross outliers (Fig. 21.3). In Figure 21.3, multi-panel plots 

associated with QC tools of the scanning process are illustrated for EBS walleye pollock otolith 

scans using data from 2021, with details described in Goldstein et al. (this volume-a). Wise and 

Roginski (2015) provide a thorough discussion of these diagnostic tools for spectral data. Once 

final data checking is complete, the lab manager executes a script to move all spectral files to a 

permanent location. While we are still evaluating the time-flow statistics for the complete scan 

process, spectral data acquisition yields an efficiency of about 40-60 scans per hour per 

instrument, but this can vary by operator and species. 
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3. FT-NIR Spectroscopy Model Development and Performance Evaluation 

 The next step in the process is where the data analyst employs a predictive model that has 

been trained and tested (sometimes called calibrated and validated) to predict fish ages from 

future otolith spectra. The process for developing an FT-NIR spectroscopy predictive model is 

highlighted in numerous chapters in this volume; however, the specific methodological approach 

using MMCNN pertaining to this discussion can be found in Benson et al. (2023). The data 

analyst examines the quality of the spectral data yet again, often looking for outliers that may 

exert undue leverage. Codes related to the condition of the otolith (whether broken, cracked, 

crystalized, etc.) during the scanning process can sometimes be identified as the reason for 

extreme predictions. As previously mentioned, our scenario is based on a model already 

developed by Benson et al. (2023) using MMCNN from otolith spectral data, reference TMA 

ages, and meta-data from 2014-2018. Results from their analysis yielded r2 values of 0.92 and 

0.91 and RMSE values of 0.83 and 0.91 years for training and test data, respectively (Fig. 21.4). 

Good model performance can be seen showing minimal differences between predicted ages and 

TMA ages, with comparable precision as illustrated in agreement plots between the two 

methods. Age predictions for 2019 and 2021 are shown in Figure 21.5, including some 

diagnostic plots that illustrate relative differences in FT-NIR and TMA age predictions. 

Quantities of relative bias for TMA ages were calculated as (read age – test age) and for FT-NIR 

as (NIR age – final age). For most ages, the relative bias between methods is consistently near 

the zero-reference line for the expected predictions of the base model. The model performance 

measures using FT-NIR spectroscopy are on par with those expected from independent double-

read data from the TMA approach (r2 = 0.90 and RMSE = 1.0). Interpretation of this 
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performance indicates that 67% or 95% of ages from the FT-NIR spectroscopy age are within 1 

or 2 years of the final TMA age, respectively. 

In order to evaluate the performance of this MMCNN model for pollock age predictions 

from future samples, in particular for otolith scans collected in 2019 and 2021, we proposed 

using Bayesian uncertainty quantification or Bayesian dropout for deep machine learning (Gal 

and Ghahramani 2016, Gal et al. 2022, Herlau et al. 2022). In concept, it operates by 

stochastically omitting neurons within the network and can be interpreted as a form of Bayesian 

model averaging (Herlau et al. 2022). This approach has emerged as a powerful tool within the 

machine learning field to provide optimal inference under model misspecification. Specifically, 

we developed 95% marginal posterior predictive internals about the base MMCNN model as the 

criteria to evaluate future model performance. Figure 21.4 (bottom panel) illustrates the Bayesian 

dropout approximation for 95% marginal posterior intervals along with the predicted walleye 

pollock ages from the same 2014-2018 data set. The jagged nature of the posterior interval along 

the traditional age domain axis is what would be expected from averaging all posterior predictive 

densities for each data point. Of course, posterior predictive intervals would appear much 

smoother with age under infinite domain intervals but instead are constrained by integers. For 

evaluation of model performance, we simply calculated the probability that the observations (age 

predictions) from future samples in 2019 and 2021 were outside the predictive interval at the 5% 

level, which would be expected from random chance, or the prob (2.5% < â > 97.5%) ≤ 5%. The 

calculated probability based on the criteria suggests that predicted ages for both 2019 and 2021 

are less than 5% (Fig. 21.6). Under this scenario, the model is performing as expected from the 

null hypothesis and no action to consider modeling updating would be needed. We have not 

explored other predictive model performance procedures, but consistent with our current 
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MMCNN modeling approach, the Bayesian dropout technique is a natural extension. Moreover, 

the flexibility of MMCNN models may provide a natural means of updating existing predictive 

models under unseen variability and poor model performance, which is discussed in the next 

section. 

 

4. Model Updating Strategies 

 When introducing an innovative technology into an existing process control system, the 

ultimate goals are data stream reliability and efficiency. In this context, we have described a 

scenario where the TRL of FT-NIR spectroscopy fish ageing has advanced to a point that 

warrants a serious consideration of its integration within the existing TMA production ageing 

enterprise, along with potential modification for optimal coadaptation. Within this system, any 

action or intervention in the process creates an associated cost to efficiency, aimed at 

maintaining data reliability. As discussed in the previous section, model performance for 

predicting 2019 and 2021 walleye pollock ages was deemed satisfactory, obviating the need for 

model updating. However, should model updating be required, we will outline general steps that 

could be taken, along with the reasons for such actions. Additionally, we will address 

outstanding questions that can guide future research to establish best practices. Barring the need 

for recalibration due to instrument standardization issues, which could be addressed using more 

prescriptive measures like transfer models (Wise and Roginski 2015), the central questions 

revolve around the nature of the dataset used for model updating. In essence, determining the 

number of samples needed and the selection process for expanding the calibration space to 

encompass new variability within the system become crucial. Although there are currently no 
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definitive answers for applications in fish age estimation, ongoing simulation studies that 

describe the general framework are currently underway (Arrington et al. this volume-a).  

Considering the schematic in Figure 21.1, the dotted arrows indicate situations where 

modeling updating becomes necessary due to new unseen data variability. In such cases, both 

otolith spectra and associated TMA (reference) ages will be needed to augment the calibration 

data set. While otolith spectra will routinely and automatically be collected within the outlined 

framework, reference ages associated introduces an additional cost. Several key considerations 

are discussed below: 

 

1. TMA methods prescribe a 20% subsample from a collection for double reading. Can this 

be reduced to 10% to maintain consistency and measure precision in the TMA and be 

applied to FT-NIR model updating when needed? 

2. Sample size requirements for the model updating dataset may be affected by the inherent 

ageing precision level of the species. For instance, if model predictions are poor and 

ageing precision is low, how do we disentangle prediction error from new spectral 

variation versus poor reference age estimates? 

3. The sample selection method could necessarily be intertwined with sample size (10% up 

to 20%). Methods that select samples based on maximizing spectral variability, such as 

Kennard-Stone, may require fewer samples. However, this approach may not represent a 

“random” or “representative” subsample of the population. 

4. The sample size and sample selection method of the updating dataset may also be 

dictated by the predictive algorithm or model used to calibrate otolith spectra to fish age. 
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In deep machine learning, techniques called “transfer learning” can be used to fine-tune 

the original model based on a new dataset (Alzubaidi et al. 2021). 

 

CONCLUSIONS 

 

 In this paper, and volume as a whole, we have described an innovative machine-based 

technology that could perhaps transform the fish ageing enterprise within NOAA Fisheries. 

Taken together, FT-NIR spectroscopy coupled with MMCNN represents a machine learning 

(ML) system. Deployment of ML systems must follow a well-defined, principled process that 

embodies data processing, training, testing, and model deployment within the production process 

that it is to replace, or adapt into. Lavin et al. (2022) described the framework for TRL for 

machine learning systems that is far more detailed than provided here. Nevertheless, several key 

ideas for a ML TRL framework relevant to our work include: 1) ML system generality, 2) 

nonlinearity, 3) ML-specific failure modes, and 4) probabilistic ML systems. 

Robust research and development that leads to broad scale applicability of technological 

system development for the domain of interest satisfies the proof of concept stage in the ML 

system lifecycle framework. FT-NIR spectroscopy in other domains, as mentioned earlier, is a 

well-developed technology that obviates the need for the earliest stages of life cycle 

development, such as greenfield research or proof of principle development. In fact, early 

research in Australia (Robins et al. 2015) and the United States (Helser et al. 2019a) have already 

shown promising results that to some extent satisfy the proof of concept development stage for 

applications in fish ageing. According to Lavin et al. (2022), the proof of concept stage is the 

entry point in the ML system R&D framework of most organizations, and this is what our SI 
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framework refers to more broadly as application development. Within these proceedings, we 

have shown broad-scale applicability of the technology and ML system in real-world scenarios 

with robust, verifiable data. In general, sufficient confidence in the technology must be achieved 

with real-world data of the case-use within the application context to move forward in TRL. 

Most ML system workflows use prescriptive compartmentalized, linear processes 

through the various stages of ML lifecycle development. Instead, a robust workflow should be 

thought of as nonlinear, allowing “discovery switchbacks” that iterate over previous, more basic, 

developmental stages as knowledge of the technology improves. This has been our experience 

moving from FT-NIR spectroscopy application development to application implementation and 

back again. We found “out of the box” PLS models to be successful in modeling otolith spectra 

to TMA ages for a variety of species within different regions, yet some systemic issues in model 

performance were rectified by revisiting basic model concepts in deep machine learning. In 

another instance, engineering modifications were needed to augment FT-NIR spectrometer 

sample presentation to achieve improved performance (signal-to-noise) for a number of species 

and life stages where otolith size was too small for the sample window diameter. These are just a 

few of the many discovery switchbacks from our experience. 

Prior to technology deployment, failure modes must carefully be addressed both in the 

productization of the system and ML-specific algorithms for future predictions. Adhering to 

strict QC standards will be key to deploying the ML system in the context of the larger process. 

Here we have shown tools and metrics to measure the quality of data streams from both 

reference and spectral data, even before being ingested downstream into the ML system. 

Moreover, ML-specific failure modes need to be addressed as early on as possible prior to 

deployment and on a continuing basis once deployment occurs. Failure points may include 
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nonlinearity in predictions from otolith spectra and reference data, unseen variability in reference 

data or spectra from biological/environmental interactions, or domain shifts that might mimic 

population changes. The key is to have a tool embedded in the system to monitor systemic or 

dynamic changes and continually evaluate model performance and intervene when needed to 

make corrections or updates. 

The probabilistic ML system should quantify the uncertainties of components and 

propagate them through the system. We are implementing simulation studies to quantify the 

broadest axis of uncertainty associated with the various elements within the system. Probabilistic 

ML methods, rooted in Bayesian probability theory, provide a principled approach to 

representing and manipulating uncertainty about models and predictions. As discussed, we have 

implemented the Bayesian dropout method for the EBS walleye pollock case study, which 

addresses uncertainty around model structure. However, methods to account and quantify 

uncertainty in data, system fault points, and unseen future variability is still an active research 

area. Component uncertainties must be assembled in a principled way to yield a meaningful 

measure of overall system uncertainty, based on safe decisions and best practices. 

Reaching operational readiness of a system comprising innovative technological 

hardware and machine learning algorithms has been discussed as we have envisioned FT-NIR 

spectroscopy age prediction at the AFSC. The simple framework we started with did not follow 

the detailed steps that are found in other application domains such as engineering and aerospace, 

but in concept follows the R&D procession needed in application development, data training, 

data testing, quality control monitoring, and system integration, if not using different 

terminology. Nevertheless, the key ideas and objectives are the same for robust technologies and 
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ML systems that strive to integrate or co-adapt innovations into existing systems of data 

pipelines, software, hardware, database architecture, and human interactions. 
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Figure 21.1. -- Stylized schematic illustrating the proposed adaptation of Fourier transform near 
infrared (FT-NIR) spectroscopy fish ageing process at the Alaska Fisheries 
Science Center’s Age and Growth Laboratory. 
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Figure 21.2. -- Selected tables and graphs from the Alaska Fisheries Science Center Age and 
Growth Laboratory’s traditional method of ageing data quality control report. 
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Figure 21.3. -- Principal component analysis extreme values and outliers for the 2021 case study 
using pre-processed data showing thresholds based on (a,b) Hotelling T2 (T-
squared) and Q residuals. (c, d) Extreme and outlier spectra identified by partial 
least squares models with fish length prediction based on Hotelling T2, Q 
residuals, and Y-distance (fish body length observations compared to predictions. 
See Goldstein et al. (this volume-a) for details.  
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Figure 21.4. -- Results from multimodal convolutional neural network model applied to 2014-
2018 eastern Bering Sea shelf bottom trawl survey walleye pollock (Gadus 
chalcogrammus) otolith Fourier transform near infrared (FT-NIR) spectra and 
associated biological and geospatial data. Over 9,000 walleye pollock otoliths 
were analyzed using FT-NIR spectrometers (Bruker Tango-R and Multipurpose 
Analyzer II) to generate this base model.  
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Figure 21.5. -- Results of applying the multimodal convolutional neural network model (Base 
Model) to walleye pollock (Gadus chalcogrammus) otolith spectra and associated 
metadata collected during the 2019 and 2021 eastern Bering Sea shelf surveys. 
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Figure 21.6. -- Age prediction of walleye pollock (Gadus chalcogrammus) collected during the 
2019 and 2021 eastern Bering Sea shelf surveys. Predictions are from the 
multimodal convolutional neural network (MMCNN) Base Model using otolith 
Fourier transform near infrared (FT-NIR) spectra and other biological and 
geospatial data and plotted against traditional age estimates. Shadowed region is 
the MMCNN “Base Model” 95% credible interval from the Bayesian dropout 
method, to which the 2019 and 2021 predictions are compared to evaluate 
predictive model performance. 
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INTRODUCTION 

 

Fourier transform near infrared (FT-NIR) spectroscopy is an emerging technology in the 

field of fish ageing. It has shown promise for estimating fish ages from biological structures 

including otoliths, vertebrae, and spines from a variety of species more rapidly than traditional, 

microscope-based methods (Rigby et al. 2014, Wedding et al. 2014, Robins et al. 2015, Rigby  

et al. 2016; Helser et al. 2019b, Passerotti et al. 2020a, Passerotti et al. 2020b, Arrington et al. 

2022, Healy et al. 2021, Benson et al. 2023). Fish ages, an important data type used to better 

understand fish ecology and population dynamics, are a critical component of integrated stock 

assessments to inform fisheries management (Maunder and Punt 2013, Methot and Wetzel 

2013). Age estimation using FT-NIR spectroscopy may allow for efficiencies in time and 

monetary expenditure, improved spatial and temporal data collection for some species, and 

improved reproducibility relative to traditional methods. 

The ability to estimate fish age using FT-NIR spectroscopy depends upon calibrating a 

predictive model between fish age and the near infrared (NIR) spectrum of an ageing structure 

(e.g., otolith). Each NIR spectrum captures a unique absorbance signature across a range of 

wavenumbers when an otolith is irradiated with NIR light. A spectrum is determined by the type 

and quantity of organic bonds present in a material and can also be affected by the material’s 

structure (Siesler et al. 2008). The molecular or structural basis for NIR otolith spectra 

correlating with fish age is still not fully understood. Passerotti et al. (2022) found that it is likely 

a complex combination of physical and chemical properties in otoliths that vary with age that are 

detectable by NIR light, including otolith size and thickness, structure, and the main constituents 

of calcium carbonate and protein. 
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There are currently two sources of uncertainty in predictive models when utilizing the 

FT-NIR spectroscopy approach for age prediction: spectral variability at age and observation 

error in reference values. Variability in otolith spectra-at-age is ubiquitous among species. This 

may be, in part, because the composition and structure of otoliths are influenced by numerous 

other biological and environmental factors in addition to age (Chang and Geffen 2013). Indeed, 

otolith spectra have also been used to discriminate among species and ecosystems (Benson et al. 

2020). Other factors such as storage medium and storage time may also contribute variability to 

spectra (Robins et al. 2015, B. Hsieh, AFSC, pers. comm.). Additionally, variability in spectra-

at-age may be driven by some otolith spectra getting misassigned to inaccurate age classes. 

When the FT-NIR method is used for age prediction, traditional estimates of animal age are used 

as the response variable (henceforth referred to as the reference value) for model calibration, 

since the true age of fishes is often not known. Traditional age estimation is done by an analyst 

counting growth increments on a biological structure. There is often ambiguity in the 

interpretation of species’ ageing structures that results in inaccurate age estimates, henceforth 

referred to as observation error. 

Statistical models assume variance between the model and the data (here, the modeled 

spectra-at-age and observed spectra-at-age). However, they do not often account for 

measurement error (here, observation error in the age estimate) (Buonaccorsi 1996). There are 

established methods to account for observation error when age estimates are used as a regressor 

(Punt et al. 2008, Cope and Punt 2007), but to our knowledge, no methods yet exist to account 

for observation error when age is used as a reference value, as is the case in the FT-NIR 

spectroscopy approach. 
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The FT-NIR ageing method shows promise for age prediction, but the application of the 

approach is still limited by our lack of understanding of how sources of uncertainty in predictive 

models impact age predictions. Specifically, it is unknown whether variability in spectra-at-age 

may lead to greater prediction uncertainty (Helser et al. 2019b), or whether prediction error is 

due to observation error in reference ages. This information is important for understanding where 

to focus efforts to improve the predictive accuracy of this technology to achieve technical 

readiness (Helser et al. this volume-a). Here, we present a preliminary study to investigate these 

two sources of uncertainty influencing model-based age predictions for eastern Bering Sea (EBS) 

Pacific cod (Gadus macrocephalus). A simulation approach was used to disentangle observation 

error from spectral variability to address the following questions: 

 

1. How does observation error in the reference age impact model predictions? 

2. How does spectral variability at age impact model predictions? 

 

METHODS 

 

We characterized the impact of two sources of uncertainty on age predictions from partial 

least squares regression (PLS) models fitted between Pacific cod age and otolith spectra: 

observation error in the reference value and spectral variability at age. A simulation approach 

was used in R version 4.3.0 (R Core Team 2023). The data simulated in this study were based on 

Pacific cod collected on EBS summer bottom trawl fishery-independent surveys conducted by 

the Alaska Fisheries Science Center between the years 2010 and 2019. 
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Broadly, in this approach, we simulated datasets with “true ages” (henceforth referred to 

as “known ages”) and paired “age estimates” for four different spectral variability scenarios: low, 

medium, high, and empirical. Each dataset had a known age vector (n x 1), an estimated age 

vector (n x 1), and a matrix of spectra (n x p), where n = sample size and p = number of 

channels/ wavenumbers. 

 

Y i x 1 = known age  

Y*i x 1 = estimated age 

X i x p = spectra 

 

p = number of channels 

i = number of individuals 

 

We simulated 100 datasets for each spectral variability scenario (400 datasets total). A 

model was fitted between spectra and known age, and spectra and estimated age for each of these 

datasets. Predictive accuracy was compared among models to evaluate the effect of observation 

error in the reference values. More details on each step of this approach are included below.    

 

Age Data Simulation 

 

The known age vector, Y, was generated using a uniform distribution to represent 

theoretical fish with integer age a of 1 through 14 years. Each age class had 100 individuals (n = 

1,400). This was a simplifying assumption used for this preliminary study, but future work 
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should explore using more biologically realistic age distributions. We simulated an age estimate 

for each known age “fish” by first modeling empirical ageing error for EBS Pacific cod using the 

method described in Punt et al. (2008). This method allows the estimation of an ageing error 

matrix that estimates the relationship between traditionally estimated fish age and known age. 

The empirical age estimates used to estimate the ageing error matrix were determined 

microscopically by at least two analysts counting pairs of annual bands corresponding to the age 

of the fish using sagittal otoliths (Matta and Kimura 2012). In the resulting ageing error matrix, 

each known age, a, has a unique probability distribution Fa of being estimated age 0 to 14 years. 

This was used to simulate an estimated age Yi* by resampling with replacement from set 

{0,1,2…14} for each individual Yi based on the Fa. The resulting matrix had a vector of known 

ages (Yi) and a vector of age estimates (Y*i) that were based on the modeled relationship 

between known age and estimated age for Pacific cod (Fig. 22.1).  

 

Spectral Data Simulation 

 

Spectra were then simulated to allow us to introduce different levels of simulated 

variability with respect to age. Spectra were simulated based on empirical Pacific cod otolith 

spectra to retain empirical shapes and profiles. Empirical spectra were available from a subset of 

the EBS Pacific cod otoliths (collection years 2013-2018, n = 10,255). See Benson et al. (2020) 

for more information on spectral data acquisition methods. We simulated spectra based on the 

principle that a spectral matrix X i x p can be decomposed via principal component analysis (PCA) 

into a score matrix Ti x a, and loading matrix PT
a x p, and a residual error matrix E i x p where i is 

the number of individuals, a is the number of components, and p is the number of wavenumber 
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channels (Beattie and Esmonde-White 2021) (Equation 1). These separate matrices can then also 

be reconstructed into spectra by multiplying the score vector by the transposed PC loading 

matrix (Fig. 22.2). The more PCs included in the reconstruction, the smaller the residual error 

and the closer the spectra will be to the original (Beattie and Esmonde-White 2021). 

 

(1)                          X i x p = Ti x a * PT
a x p + E i x p  

 

    Ti x p  = score matrix 

    Pp x a  = loadings matrix 

p = number of wavenumber channels 

a = number of components  

i = number of individuals 

 

First, we decomposed empirical Pacific cod otolith spectra into scores and loadings using 

PCA (Equation 1). Spectra had been preprocessed using Savitzky-Golay smoothing based on 

standard methods at the Alaska Fisheries Science Center to remove baseline shifts and prepare 

data for modeling (Helser et al. 2019b, Arrington et al. 2022, Healy et al. 2021, Benson et al. 

2023). We standardized the scores from each principal component (PC) 1-5 to have unit variance 

(Fig. 22.3). The first 5 PCs were selected because they explained a prior threshold variance of 

greater than 99.95%. We then averaged scores among specimens of the same age to obtain an 

average score by age for each PC 1-5. Variability was introduced around each average age-

specific score to simulate the four variability scenarios. In each scenario, we included 100 

random draws per age and per PC to match the simulated age data set. Our four scenarios were: 
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the “real world” scenario with scores sampled from the real, empirical distributions; a low 

variability scenario that was informed by observations of the low end of standard deviation (SD) 

in the score distributions by age; a medium variability scenario; and a high variability scenario, 

also informed by the higher end of SD in score distributions by age. For the low, medium, and 

high variation scenarios, we randomly sampled from normal distributions with a mean equal to 

the mean score by age and a SD of 0.01 for low variability, 0.05 for medium variability, and 0.10 

for high variability to simulate scores (Fig. 22.4). Principal components are uncorrelated, so we 

sampled from individual distributions. However, sampling from normal distributions was a 

simplifying assumption for this preliminary approach. True distributions were sometimes closer 

to bimodal (Fig. 22.3), and future work could explore using different distributions to simulate 

variability in scores. The scores with simulated variability were then multiplied by the original 

transposed loadings matrices and back-transformed to spectra (Equation 1, Fig. 22.5). This 

approach allowed us to avoid making any assumptions about the empirical shape of spectra that 

is captured and retained by using empirical loadings matrices. We then bootstrapped this step 

with 100 datasets per scenario, each with 100 individuals per known age 1 to 14 years (n = 

1,400). Due to small sample sizes of empirical spectra over age 10 that may not have been 

representative, we truncated our simulated dataset at a known age of 10 years (some simulated 

estimated ages exceeded this). 

 

Evaluation of Uncertainty 

 

Finally, we fitted PLS models between simulated spectra and known age and between 

simulated spectra and estimated age for each spectral variability scenario. This allowed us to 
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evaluate the effect of observation error in reference age on model predictions at different levels 

of spectral variability. Predictions were rounded to the nearest integer and evaluated relative to 

known fish age using root mean square error (RMSE), the coefficient of determination (r2), and 

age-bias plots (Campana et al. 1995) for all scenarios. Future work could explore additional 

methods and metrics to quantify and compare predictive accuracy. 

 

RESULTS AND DISCUSSION 

 

FT-NIR spectroscopy has shown great potential for predicting the age of fish from 

otoliths with improved efficiency, repeatability, and near-similar accuracy to traditional methods 

for many species including EBS Pacific cod. However, to date, age estimates have been relied 

upon for model calibration and evaluation, since true fish ages were unknown. The effect that 

observation error in reference ages may have on model predictions could not be evaluated. This 

study is the first to evaluate the impact of ageing error on FT-NIR spectroscopy-based age 

predictions from fish otoliths. The preliminary results of this study suggest that uncertainty in 

model-based age predictions is driven by spectral variability at age for EBS Pacific cod more so 

than by observation error in traditional ages, but that bias in reference ages may still have an 

impact. At lower levels of spectral variability, we observed a greater impact of ageing bias on the 

models’ predictive skill. At higher levels of spectral variability, we observed a reduced impact of 

ageing bias on the models’ predictive skill, including in the “real world”, empirical scenario. At 

higher levels of spectral variability, nonlinearity emerged with a tendency for models to 

overpredict young ages and underpredict older ages. 
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Spectral variability at age was the greater driver of uncertainty in model-based age 

predictions in this simulation. At the lowest level of simulated spectral variability, predicted ages 

were within just one year of the known age regardless of which reference value (known age or 

estimated age) was used except for age-10 fish (Figs. 22.6, 22.7, 22.8, Table 22.1). At empirical 

levels of spectral variability, there was greater uncertainty in model-based age predictions 

regardless of whether known ages or estimated ages were used as the models’ reference values 

(Figs. 22.6, 22.7, 22.8, Table 22.1). This suggests that the variability at age in empirical spectra 

cannot be attributed to ageing error alone. It is still unknown whether variability in spectra-at-age 

is largely due to heterogeneity in the molecular or structural composition of otoliths at age or 

affected by other factors such as otolith storage. Effects of storage time on otolith spectra have 

been observed for saddletail snapper (Lutjanus malabaricus) and barramundi (Lates calcarifer) 

(Robins et al. 2015), which may contribute to spectral variability at age, but more work is needed 

to explore this for Pacific cod. Storage media may also contribute to storage effects, and while 

snapper and barramundi otoliths were stored dry, Pacific cod otoliths included in this study were 

stored in glycerin thymol. 

Bias in traditionally estimated reference ages also impacted age predictions in this study. 

The age reading error model best supported by the Akaike information criterion was a curvilinear 

coefficient of variation (CV) and a curvilinear bias between estimated age and known age. 

Pacific cod are among the most difficult Alaska groundfish species to age and commonly have 

strongly defined “checks” in early life that make growth patterns hard to interpret (Matta and 

Kimura 2012). The modeled bias for Pacific cod included in this study was most prominent for 

younger (under age 2 years) and older (over age 6 years) fish, which was reflected in the 

simulated age estimates that tended to be overestimates of known age (Fig. 22.1). At lower levels 
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of spectral variability, we observed a greater impact of ageing bias on the models’ predictive 

skill with larger differences in the RMSE, r2, and bias plots between age estimate models and 

known age models (Figs. 22.6, 22.7, 22.8, Table 22.1). At higher levels of spectral variation, we 

observed a reduced impact of ageing bias on the model’s predictive skill, including in the “real 

world”, empirical scenario (Figs. 22.6, 22.7, 22.8, Table 22.1). We also observed slightly 

improved r2 values for predictions from models fitted to age estimates compared to models fitted 

to known ages (Fig. 22.7, Table 22.1). This was an unexpected result but was likely due to the 

positive bias in age estimates counteracting nonlinearity in model predictions at older ages. 

At higher levels of spectral variability, we observed increased nonlinearity with a 

tendency for models to overpredict young ages and underpredict older ages (Figs. 22.6, 22.8). 

Nonlinearity was also observed in the case study applying FT-NIR spectroscopy to age Pacific 

cod, with a tendency to underpredict the age of older fish (Healy et al. 2021). Since the true ages 

of fish were not known in that study, predictions were compared only relative to age estimates. It 

was unknown whether the cause of the nonlinearity was age estimation error in reference values, 

nonlinearity inherent in the spectra, or a combination. 

The presence of nonlinearity in predictions for both known age models and age estimate 

models in this simulation study supports that the nonlinearity in predictions is driven, at least in 

part, by the spectra as opposed to solely by observation error in traditionally estimated reference 

ages. The increase in nonlinearity with spectral variability also suggests that when more spectral 

variability at age is present, the effect of the nonlinearity on predictions may be exacerbated. 

This is to be expected given that there would likely be more overlap between spectra of 

subsequent age classes. This can be somewhat visualized in the distributions of scores-at-age for 

the four spectral variability scenarios (Fig. 22.4). 
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Several possible causes for nonlinearity in spectra with fish age have been suggested. 

There is a decline in otolith accretion with age for many fish species (Helser et al. 2012, Matta et 

al. 2020), and therefore the relationship between fish age and analyte concentration in otoliths 

may not stay consistent. There may also be a nonlinear relationship between spectra and the 

analyte being measured. This can be caused by a decline in light attenuation with sample 

thickness (Padalkar and Pleshko 2015, Passerotti et al. 2020b) and violations to the Beer-

Lambert Law, where light is either scattered from the sample or absorbed by the sample (as can 

be the case with thick samples) instead of being transmitted (Miller et al. 1993, Lui et al. 2018, 

Benson et al. 2023). 

An alternative modeling approach may help to resolve nonlinearity in EBS Pacific cod 

age predictions. Linear multivariate methods, such as the PLS models used in this study, can 

often deal with nonlinearity through wavenumber selection and dimensionality reduction (Miller 

at al. 1996). However, they are not always successful and other nonlinear modeling approaches 

may be better suited (Miller et al. 1993, Benson et al. 2023). Only spectra with the lowest 

variability at age were able to produce linear age predictions in this study using PLS models. 

Benson et al. (2023) found that a multimodal convolutional neural network model outperformed 

PLS models for predicting the age of walleye pollock (Gadus chalcogrammus), especially for 

older fish. This approach may be successful at resolving nonlinearity in predictions for Pacific 

cod. 

It is important to note that model predictive accuracy is reduced in the empirical scenario 

in the present study compared to Healy et al. (2021); however, this is likely due to differing goals 

between studies. The goal of Healy et al. (2021) was to optimize age predictions, while the goal 

of the present study was to evaluate the impact of error in reference ages. Models in this present 
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study were not optimized for wavenumber region or number of latent variables. Instead, 

predictive accuracy was compared among scenarios to evaluate them relative to one another.  

When RMSE and r2 are calculated relative to the age estimate instead of known age, they are 

further worsened (Table 22.2). This indicates that in real applications of this technology, model 

predictions may actually be closer to true fish ages than the age estimates being used to evaluate 

them. 

We make several assumptions in this study that may impact our findings. We assumed a 

uniform distribution of known ages 1 to 10 to build our models, but future work should explore 

the effect of a more realistic age structure, which is an important consideration when 

characterizing ageing error (Nesslage et al. 2022). Since bias in age estimates relative to known 

age was highest for older fish and there are typically fewer older fish in real-world populations, 

we would expect that our RMSE values may reflect a greater impact of ageing error on model 

predictions than in real-world scenarios. Additionally, though we did our best to disentangle two 

confounded sources of error, we used empirical spectra that we averaged based on traditional age 

estimates (since true fish age is unknown) as the foundation of our simulation. This approach 

assumes an even distribution of ageing error around true age, which it would appear is not 

entirely true for Pacific cod (Fig. 22.1). However, the results of the low spectral variability 

scenario indicate that linear age predictions with good predictive accuracy are possible using our 

simulation approach. Finally, we added random variability to average PC scores by age for the 

low, medium, and high scenarios by drawing from normal distributions. This was a simplifying 

assumption. However, when compared to the empirical scenario for which variability was drawn 

from empirical distributions, the low, medium, and high scenarios seem reasonable (Fig. 22.4). 

The largest difference between the empirical and non-empirical scenarios is that the empirical 
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scenario had varying levels of spectral variability at age, while the non-empirical scenarios had 

constant variability across the full age range (Figs. 22.4, 22.6, 22.8). It is still unknown why 

spectral variability changes with age but may reflect the individual growth variability in fish 

populations that can potentially increase with age (Quinn and Deriso 1999, Ogle et al. 2017). 

The results of this study address two sources of uncertainty in PLS models fitted between 

Pacific cod otolith spectra and fish age. This is the first study to separately evaluate the effects of 

these two sources of uncertainty on PLS model predictions for otolith spectra, and preliminary 

results suggest that ageing error in reference values may not impact model predictions to the 

same degree as spectral variability and nonlinearity with age for EBS Pacific cod. Some of the 

findings of this study may be applicable to other species, such as the impact of bias on model-

based age predictions. But, ageing error and otolith spectra can vary by region (Robins et al. 

2015, Benson et al. 2020, Passerotti et al. 2020b) and species (Benson et al. 2020), and we 

recommend exploring the effect of ageing error on a region- and species-specific basis. This 

simulation framework is flexible and can be applied to explore the effects of age estimation error 

and spectral variability on model-based age predictions for a range of scenarios and species. This 

is important for understanding the utility of the FT-NIR spectroscopy approach and where to 

focus efforts to improve predictive accuracy to achieve technical readiness. 
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Table 22.1. -- The root mean square error (RMSE) and r2 values between model predictions and 
known age. Each spectral variability scenario is represented by 100 iterations of 
models fitted to age estimate reference values. 

 

Spectral 
variability 

Model reference 
age type 

RMSE (years)           
known age 

r2                              
known age 

empirical known age 1.39-1.54 0.62-0.70 

 age estimate 1.43-1.58 0.66-0.73 

low known age 0.20-0.27 0.99-0.99 

 age estimate 0.50-0.56 0.97-0.97 

medium known age 0.94-1.06 0.84-0.88 

 age estimate 1.01-1.14 0.85-0.89 

high known age 1.56-1.74 0.45-0.59 

 age estimate 1.61-1.77 0.52-0.64 
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Table 22.2. -- The root mean square error (RMSE) and r2 values between model predictions and 
estimated age. Each spectral variability scenario is represented by 100 iterations 
of models fitted to age estimate reference values. This represents the status quo 
method of model calibration and evaluation when true fish age is unknown. 

 

Spectral 
variability 

Model reference 
age type 

RMSE (years)                
age estimate 

r2                         
age estimate 

empirical age estimate 1.62-1.78 0.56-0.66 

low age estimate 0.58-0.64 0.96-0.97 

medium age estimate 1.12-1.28 0.81-0.86 

high age estimate 1.80-1.98 0.40-0.54 
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Figure 22.1. -- Simulated known age and corresponding age estimates (in gray) relative to the 
modeled relationship between known age and estimated age for eastern Bering 
Sea Pacific cod (Gadus macrocephalus) collected from 2010-2019 (solid red line) 
with 95% confidence intervals (dashed red lines). The size of the gray point 
reflects the number of simulated observations. The one-to-one line is shown in 
black.  
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Figure 22.2. -- One empirical, raw spectrum (solid line), and the same spectrum recomposed 
using principal component (PC)1 scores multiplied by the transposed PC1 loading 
(dotted line). 
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Figure 22.3. -- Kernel density plots showing empirical variability in standardized scores for principal components (PCs) 1 through 5 
by empirically estimated age. This is the foundation for calculating the average score by age for each PC 1 to 5 to 
simulate spectra.  
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Figure 22.4. -- Simulated scores for just principal component (PC) 1 for empirical or “real world” variability, low variability (standard 
deviation, SD = 0.01), medium variability (SD = 0.05), and high variability (SD = 0.10). Scores were simulated for PCs 
1 to 5. 
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Figure 22.5. -- Simulated spectra for four spectral variation scenarios: empirical, low, medium, and high. Example of one data set per 
scenario; each had 100 resampled data sets. 
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Figure 22.6. -- Predicted ages from models fitted between simulated spectra and known age 
(green) or age estimate (pink) plotted relative to known age. Predictions are 
shown as dots that scale with count and the average prediction with standard error 
is shown as a ribbon. This illustrates the impact of ageing error in the reference 
value on model predictions at four different levels of spectral variation: empirical, 
low, medium, and high. 
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Figure 22.7. -- The root mean square error (RMSE) and r2 values for model predictions relative 
to known age. Kernel density plot comparisons between RMSE and r2 for age 
estimate models and known age models are shown for the four spectral variability 
scenarios. Ranges in values are based on 100 iterations per reference age type per 
scenario. 
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Figure 22.8. -- Prediction bias relative to known age compared among levels of spectral 
variation: empirical, low, medium, and high for models fitted to age estimate 
(pink) and known age (green). 
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ABSTRACT 

 

Adopting age determination error within stock assessments has been a feature applied and 

available in stock assessments since the early 1980s (Fournier and Archibald 1982). Findings 

from applying preliminary walleye pollock (Gadus chalcogrammus) age data using Fourier 

transform near infrared (FT-NIR) spectroscopy method are summarized below. 

 

1. Modification of assessment model a step forward: The study concludes that the 

modification of the assessment model used in the research represents a positive step 

forward in accurately evaluating the fishery or population under investigation. The 

specific modifications made to the model may be highlighted, along with their impact 

on improving the accuracy or reliability of the assessment results. 

 

2. Flexibility to use data from any source/year/gear type: The study emphasizes the 

importance of flexibility in utilizing data from various sources, years, and gear types. 

By incorporating data from diverse sources, the assessment becomes more 

comprehensive and robust. This flexibility allows for a broader understanding of the 

fishery or population dynamics and facilitates better-informed management decisions. 

 

3. More detail and random effects application: The study suggests that incorporating 

more detail and applying random effects in the assessment model can lead to more 

accurate and nuanced results. By accounting for additional variables or factors that 
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influence the fishery or population, the assessment becomes more comprehensive and 

better represents the complex dynamics at play. 

 

4. Preliminary results seem promising: The preliminary results obtained from the 

assessment are described as promising. This indicates that the initial findings suggest 

positive outcomes or trends regarding the health and sustainability of the fishery or 

population. However, further analysis and validation may be necessary to confirm the 

reliability of these results. 

 

5. Age error "shape" relatively limited, application needs more careful evaluation: The 

study finds that the shape of age errors, which refers to the pattern or distribution of 

errors associated with age determination, is relatively limited. However, the summary 

cautions that the application of age error estimation requires more careful evaluation. 

This implies that while the estimation method shows some promise, its practical 

application needs to be thoroughly examined to ensure its accuracy and suitability for 

future assessments. 
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FT-NIR DATA AND APPLICATION COMPARISONS 

 

For the data made available from 2014-2018 using the FT-NIR determined ages, we see 

that both the proportions-at-age and body mass-at-age have differences (Figs. 23.1 and 23.2). 

Interpretation of these patterns suggest that there may be some important age-specific patterns 

between the traditional age determination methods and the FT-NIR age determination approach. 

Some standard assessment model diagnostics (root mean square error and effective sample size) 

suggest that the model fit to the traditional age data is better than the fit to the alternative FT-NIR 

age data (Table 23.1). Preliminary application of the new data compared with the conventional 

age determination approach does have some impact on the assessment results (Fig. 23.3). 

However, more work is needed to estimate the observation-error matrices used in stock 

assessments. Specifically, this should entail a careful study of conventional reader/tester age 

estimates with those from FT-NIR estimates.  
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Table 23.1. -- Indicative eastern Bering sea walleye pollock (Gadus chalcogrammus) model 
diagnostics using the “conventional” age-determination error matrix and data 
compared with the Fourier transform near infrared (FT-NIR) matrix and data, from 
various sources (BTS = bottom trawl survey, ATS = acoustic trawl survey, AVO = 
acoustic vessels of opportunity). Lower values of root mean square error (RMSE) 
and higher values of effective sample size “effective N” indicate better fits. 

 
Component Conventional FT-NIR 
RMSE BTS 0.16 0.16 
RMSE ATS 0.21 0.20 
RMSE AVO 0.22 0.21 
Effective N Fishery 1,022 899 
Effective N BTS 213 210 
Effective N ATS 253 256 
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Figure 23.1. -- Comparison of the data in terms of proportions-at-age over time for the Fourier 
transform near infrared spectroscopy (NIRS) and traditional age determination 
data. Fishery data is shown on the left and survey on the right. 
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Figure 23.2. -- Comparison of the data in terms of body mass-at-age over time for the Fourier 
transform near infrared spectroscopy (NIRS) and traditional age-determination 
data. Fishery data is shown on the left and survey on the right. Rows represent age 
classes. 
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Figure 23.3. -- Preliminary indication of comparisons of a stock assessment model run with the 
conventional Alaska Fisheries Science Center Age and Growth Program’s 
conversion matrix (AGP_age_error) with that of the Fourier transform near 
infrared estimate (NIR_age_error). Spawning biomass estimates are shown on the 
top panel and recruitment on bottom. 
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ABSTRACT 

 

Fourier transform near infrared (FT-NIR) spectroscopy of otoliths is emerging as a highly 

efficient fish age estimation alternative to the labor intensive, time consuming traditional 

microscope-based approach (TMA). However, before such innovative methods can be 

operationalized in the production fish ageing and management process, FT-NIR spectroscopy 

generated data must be vetted within the stock assessment model. Using southeastern Bering Sea 

Pacific cod as a case study, we present the first investigation of the stock assessment model 

sensitivity to alternative age data predicted from FT-NIR spectroscopy and neural networks 

(NIR-NN). Specifically, we employed Markov Chain Monte Carlo simulation of the Pacific cod 

stock assessment model to evaluate the sensitivity of key internal parameters and externally 

derived management quantities by substituting a 6-year span of survey age compositions (2013-

2018) that were based on more than 8,000 generated NIR-NN ages. Our results showed that 

assessment model outcomes were highly insensitive to the substitution of TMA age compositions 

for age compositions from the NIR-NN ageing approach, such that the probability of observing 

differences for any parameter or derived management quantity was no more than 4%. 
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INTRODUCTION 

 

The eastern Bering Sea (EBS) Pacific cod (Gadus macrocephalus) fishery is one of the 

largest fish stocks managed in the Alaska region, bringing in a yearly average of 185,896 metric 

tons from 1991 through 2018 (Thompson 2018). Pacific cod stocks are primarily managed with 

an age-structured, length-at-age-structured, or stage-structured stock assessment model 

(Thompson 2018). The annual EBS shelf bottom trawl surveys provide age compositions that 

along with abundance trends represent crucial data inputs for the assessment, shaping essential 

model parameters estimated internally, such as natural mortality, recruitment, and growth. These 

quantities then offer insights into population abundance, productivity, and female spawning 

biomass level relative to fishery management benchmarks. Subsequently, this information serves 

as the scientific advice that guides resource managers in establishing harvest goals (Hilborn and 

Walters 1992, Maunder and Punt 2013). Integrated stock assessments, like those used for Pacific 

cod (Methot and Wetzel 2013, Thompson 2018), heavily rely on age and length data (Maunder 

and Punt 2013, Ono 2015). However, traditional ageing methods, which involve some form of 

otolith preparation (such as sectioning and roasting) followed by microscopic evaluation of 

annual growth rings, can be subjective, prone to error, and labor intensive. Campana (2001) has 

suggested that age data obtained through traditional methods are considered one of the most 

expensive data sources for stock assessments. 

Ageing error is one of the major sources of measurement errors on composition data most 

often used in age-structured assessments (Deriso et al. 1985). Ageing error can lead to profound 

uncertainty on estimates of growth, weight- or maturity-at-age, natural mortality, and 

productivity (i.e., fewer older fish means higher natural mortality and higher productivity) that 
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will in turn affect management reference points (Reeves 2003, De Pontual et al. 2006, Bertignac 

and De Pontual 2007). Two properties of ageing error are precision and accuracy (Kimura and 

Lyons 1991, Beamish and McFarlane 1995). Imprecision occurs when age reading errors occur 

at random between independent trials of age assignment (e.g., by two age readers). Accuracy, or 

bias, occurs when there is a systematic difference between the age assigned and the true age. In 

practice, both types of error occur during the age determination process, but generally precision 

is most often routinely quantified for use in stock assessments by production ageing laboratories.  

Recent research has explored a novel approach of using Fourier transform near infrared 

(FT-NIR) spectroscopy of otoliths as a rapid, nondestructive, and more efficient method of 

generating fish ages (Helser et al. 2019a). Near infrared (NIR) spectroscopy has been widely 

used in agriculture, pharmaceutical, and petrochemical industries, and most recently in terrestrial 

ecology (Vance et al. 2014) and fishery science (Helser et al. 2019a, Helser et al. 2019b). It 

functions by exciting covalent bonds (O-H, C=O, C-H, C-N, and N-H) at the molecular level 

using NIR light and measuring absorbance in the wavenumber range 4,000 to 12,500 cm−1. The 

light interaction with the sample results in measurable vibrational frequencies represented by 

spectral signatures associated with molecular overtones and combinations that make up 

compounds in the sample (Conzen 2014, Siesler et al. 2002). In otoliths, these spectral signatures 

are a good proxy for fish age. The use of FT-NIR spectroscopy of otoliths to estimate fish age 

have been reported for a number of species (Wedding et al. 2014, Helser et al. 2019b, Passerotti 

et al. 2022), including EBS Pacific cod in particular (Healy et al. 2021). Healy et al. (2021) 

found the Pacific cod multiyear model yielded high precision metrics (r2 = 0.869, root mean 

square error RMSE = 0.614 years, percent agreement PA = 63%, coefficient of variation CV = 

7.412%), which were highly comparable to precision metrics from the traditional microscopic 



369 
 

approach (r2 = 0.763-0.869, RMSE = 0.639-0.737 years, PA = 63%-70%, CV = 5.671-6.698%). 

Moreover, recent work by Benson et al. (2023) has combined FT-NIR spectroscopy of otoliths 

and neural networks (NIR-NN) for fish ageing that directly ingests the whole range of collected 

spectral information and corresponding geospatial and biological data that improve predictive 

skill. 

With the promise for improving efficiency and repeatability of generating age data for 

stock assessments, the National Oceanic and Atmospheric Administration, National Marine 

Fisheries Service has undertaken a nationally coordinated R&D effort across seven biological 

laboratories with the goal of operationalizing this new technology into the fish age determination 

enterprise (Helser et al. 2019a). These efforts hold great promise for improving efficiency and 

repeatability of generating age data for stock assessments; however, no study to date has 

evaluated the impact of these new data products on model outputs used for management systems. 

Here, we present a first case study that uses more than 8,000 otolith spectra and biological data 

across 6 years to generate ages using the NIR-NN model, which are then incorporated as age 

composition data in the EBS Pacific cod stock assessment. Specifically, this evaluation was 

performed as a sensitivity analysis by replacing ages generated by the traditional microscope-

based approach (TMA) with NIR-NN predictions. We evaluate a number of scenarios in which 

age compositions from each ageing method are incorporated into the assessment model with 

different assumptions about ageing error using Markov Chain Monte Carlo simulation and 

compare key assessment model internally-estimated parameters and derived management 

quantities. 
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METHODS 

 

Pacific cod otoliths were taken from recent collections for this analysis. Pacific cod 

otoliths and corresponding biological data (fish length and sex) were collected during 2013-2018 

EBS bottom trawl surveys (BTS) conducted by Alaska Fisheries Science Center (AFSC) 

Groundfish Assessment Program (https://www.fisheries.noaa.gov/alaska/science-

data/groundfish-assessment-program-bottom-trawl-surveys). The BTS, which covers the 

southeast EBS continental shelf, occurs annually and employs a 20 ✕ 20 nautical mile fixed grid 

design at 0-50 m (inner shelf), 50-100 m (middle shelf), and 100-200 m (outer shelf) depths. The 

survey area averages 493,000 km2 over approximately 300-356 hauls annually (Thompson 2018). 

Otoliths are taken from fish subsampled within each haul; fish are dissected on deck and ages are 

later determined in the laboratory. BTS estimates of abundance and corresponding age and 

length compositions are generated using a depth-area stratified design-based approach (Lauth et 

al. 2019).  

In statistical analysis involving otolith spectra, interest is in predicting the target variable 

(often referred to and used interchangeably as reference data), which in our case is the TMA age. 

For the reader not familiar with chemometrics, in simple terms, it involves reducing the 

dimensionality of otolith spectra (the X data matrix) while at the same time maximizing the 

correlation with reference values (Y data vector) through a small set of intermediate linear latent 

variables (Chen and Wang 2001). Standard classical methods of generating this relationship 

involve techniques such as principal component regression or partial least squares (PLS) 

regression. Our approach, however, employs deep machine learning, but the reference data 

preparation and spectral data acquisition are essentially the same, described below. 

https://www.fisheries.noaa.gov/alaska/science-data/groundfish-assessment-program-bottom-trawl-surveys
https://www.fisheries.noaa.gov/alaska/science-data/groundfish-assessment-program-bottom-trawl-surveys
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Reference Age Data 

 

Pacific cod ages for all samples (n = 8,261) were estimated by analysts enumerating 

annual growth rings of otoliths, following the ageing guidelines and procedures of the AFSC’s 

Age and Growth Manual (Matta and Kimura 2012). This was done for only one of the paired 

sagittal otoliths belonging to a given fish, leaving the other otolith for spectroscopic analysis. 

Age determination is performed using a dissecting microscope under reflected light, which is 

preceded by preparation techniques such as cutting to expose the otolith core and roasting to 

enhance annual bands. The AFSC has historically employed a random 20% double read between 

two independent analysts (referred to as a reader and tester) to monitor precision and 

repeatability of the TMA process (Matta and Kimura 2012). The metrics of precision are 

expressed as percent agreement, average percent error, and the coefficient of variation (CV) 

(Matta and Kimura 2012). Since several of our assessment model scenarios included TMA age 

reading error, this was quantified through double-read data from the 1993-2019 EBS BTS. 

 

Otolith Spectral Acquisition and Data 

 

For spectroscopic analysis, whole otoliths were removed from their vials and gently 

blotted dry with Kimwipes to remove excess glycerol-thymol (storage medium) before 

placement on the sample window of a Bruker Tango-R or MPA II FT-NIR spectrometer. 

Otoliths were covered with a gold stamp and analyzed using diffuse reflectance on an integrated 

sphere, and spectra were collected at step sizes of 8 cm−1 for MPA II and 8.3 cm−1 for TANGO 

R, with 64 co-scans, measuring absorbance values from 12,500 to 4,000 cm−1. Helser et al. 
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(2019b) reported that scan time to acquire otolith spectra ranges between 40 and 60 seconds. The 

entire paired data set of TMA age, otolith spectra, and associated biological data was split into 

training (80%) and testing (20%) sets using the “onion” algorithm (Gallagher et al. 2020). The 

“onion” algorithm was applied to each year in the split and then recombined to capture annual 

variability in the spectra in both train and test data sets. Spectral data were pre-processed using 

1st derivative and a Savitsky-Golay (2nd order polynomial, 17 points) smoothing filter. Spectral 

variability across collection years and detection of outliers was evaluated using principal 

component analysis (PCA) and measures such as Hotelling’s T2 and Q-statistic (Mujica et al. 

2011, Rodionova and Pomerantsev 2020). A more comprehensive description of sample 

presentation, spectral data preprocessing and outlier detection can be found in Benson et al. 

(2020, 2023). 

 

Multimodal Convolutional Neural Network Model 

 

The proposed multimodal convolutional neural network (MMCNN) was built by 

incorporating otolith spectra and biological datasets as multimodal input within different 

branches. Benson et al. (2023) provide a more detailed description of the MMCNN model, 

although the general model architecture is described here. The model is trained to extract 

information out of the entire spectral data range before integrating it with information extracted 

from additional data blocks that includes corresponding biological data. Biological information 

routinely collected at sea include fish length and fish sex, both of which were proposed in the 

model since they bear an allometric relationship with fish somatic growth and otolith accretion 

rates. 
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We employed Python 3.7.0 using TensorFlow and Keras to train and test a neural 

network model. The model consisted of two primary branches and 14 layers. The first branch 

was associated with spectral data input (layer 1) and represented 5 layers with the convolutional 

layer (layer 2) activated by the rectified Linear Unit (ReLU) activation function for nonlinear 

activation. The convolutional neural network is capable of extracting the abstract features of FT-

NIR spectra and selecting most featured wavenumbers (Chen and Wang 2019). Output was 

flattened (layer 3) before passing to the fully connected dense layer (layer 4) and regularized 

through dropout (layer 5). For this model, all fully connected dense layers were activated with 

the exponential linear unit (eLU) activation function to capture the non-linearity in the data. The 

dropout layers were used for regularization to prevent overfitting. A number of nodes for fully 

connected dense layers and a dropout rate for dropout layers were tuned using the Hyperband 

optimization tuning algorithm. 

The second branch was associated with corresponding biological data that have an effect 

on fish growth and provide information that improves the ageing model performance. Fish sex 

was preprocessed with one-hot encoding, which represented categorical variables as numerical 

values in a machine learning model. Fish length was scaled with a zero mean and unit variance. 

The concatenated preprocessed biological data input layer (layer 6) was processed with dense 

layer (layer 7) and regularized with dropout layer (layer 8) and then concatenated to the second 

branch (layer 9). Within the combined, two fully connected dense layers (layers 10 and 12) were 

regularized through dropout layers (layers 11 and 13). Then the output of the previous layers was 

fed to the final fully connected dense layer (layer 14) with a single output node of predicted ages 

and linear activation function. 
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Model performance was evaluated through plotting NIR-NN predicted ages on TMA 

ages and calculating r2 and RMSE of test data. The SHapley Additive exPlanations (SHAP) 

method was used to interpret the importance of features for predictions (Lundberg and Lee 

2017). NIR-NN model performance was also evaluated with the TMA approach using a modified 

Bland-Altman plot (Ogle 2017a, 2018) and also a measure of relative bias with and without 

respect to age using: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 =  
∑ (𝐴𝐴1 − 𝐴𝐴2) 𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
. 

 

In the above equation, A1 and A2 represent TMA age estimates of the reader and tester, 

respectively. For the NIR-NN model predictions, the same equation was used for the difference 

between the NIR-NN model predicted age and the average of the A1 and A2 TMA estimates. 

 

Stock Assessment Model 

 

The EBS Pacific cod stock assessment is an age-structured model based on Stock 

Synthesis V3.30.16.02 (Methot and Wetzel 2013), which is an integrated statistical catch-at-age 

modeling framework coded using Automatic Differentiation Model Builder (ADMB; Fournier et 

al. 2012). The base model specification used in this analysis most closely resembles Model 16.6 

of the 2020 stock assessment report (Thompson et al. 2018). Data inputs included: 1) BTS swept 

area biomass 1982-2019, 2) BTS age compositions from 1994-2019, 3) BTS size compositions 

1982-2019, 4) fishery catches 1977-2020, and 5) fishery size compositions 1977-2020. The base 

model included BTS shelf age compositions, as the goal of this analysis was to evaluate the 
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sensitivity of model parameter estimation (e.g., natural mortality, recruitment, and growth) and 

derived-quantity outputs most dependent on those data to changes to this data source (e.g., 

missing data, alternate age data from the same specimens generated via FT-NIR spectroscopy, 

and alternate ageing error estimates via FT-NIR spectroscopy ageing). Model parameters 

estimated internally include: 1) survey catchability, q, 2) natural mortality rate, M, 3) natural log 

of initial recruitment, lnR0 and time-varying recruitment deviations, 4) growth parameters (LMin, 

LMax, von Bertalanffy k, Richards k, and variability for size at minimum and maximum age), 5) 

fishery and survey selectivity parameters, and 6) Dirichlet-multinomial log(theta) parameters 

(Table 24.1). 

One difference between our base model (i.e., the TMA comps/TMA error model) and the 

model employed for stock assessment (i.e., the original model) was that the otolith ages used for 

generating age compositions in this study included a subset of the original specimens. A single 

whole sagittal otolith is needed for instrument scanning to acquire spectra, and in some cases 

both otoliths have already been processed for TMA age estimates. All age compositions used in 

this analysis were calculated using a design-based estimator rather than model-based estimation 

(e.g., via VAST). Another difference between our base model and the original model was that 

ageing error was only estimated for the years 1977-2007, while the years 2008-2019 used an 

ageing error vector calculated externally to the model via the nwfscAgeingError package (Punt et 

al. 2008) which estimates age imprecision and age reading bias-at-age. 

For the ageing error vector estimated within Stock Synthesis (years 1977-2007), there are 

seven parameters that are used in estimation of ageing error-at-age. The second and third ageing 

error parameters are attributed to the bias at the starting age (age-0) and bias at the maximum age 

(age-20) in the form of an additive offset from unbiased age. These two parameters were 
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estimated within the time-varying module of Stock Synthesis in order to incorporate the block 

structure that was specified in the original assessment model (i.e., estimated for the 1977-2007 

block and not estimated for 2008-2019). Two ageing error vectors were calculated externally to 

Stock Synthesis using the Punt et al. (2008) method. The first ageing error vector, which is 

representative exclusively of the TMA method, was calculated using 8,998 double reads from 

1993-2020 (i.e., reader age vs. tester age). This error vector was referred to as TMA error. The 

second vector, which represented error arising from both the TMA and the NIR methods, 

consisted of triplicate age outcomes for the same otolith. Here the error vector was calculated 

using 1,946 double reads from 2013-2018 (reader and tester) and the FT-NIR spectroscopy 

predicted age (from NIR-NN). This vector is referred to as TMA-FTNIR error. These ageing error 

vectors were used as inputs for the ageing error module within SS for the second time block of 

2008-2019, thus ageing error parameters were not estimated for these years. A fourth and final 

vector of error was calculated from a sample of 600 otoliths that were predicted with the NIR-

CNN model from otoliths collected from 2016 and 2017 EBS BTS that were scanned on two 

different instruments and by two different operators. This was not used in SS but rather simply 

used to compare measurement error arising from spectral data collection. 

Model scenarios developed for this analysis included age compositions generated from 

the TMA and NIR-NN approaches and two alternative error vector assumptions (Table 24.1). 

The default or base scenario used the 2013-2018 TMA age compositions and the TMA ageing 

error (identified as TMA comps/TMA ageing error). An alternative scenario employed the same 

specification and inputs as the base model scenario but used 2013-2018 age compositions 

generated from the NIR-NN approach and assumed the same TMA age reading error. This 

scenario is identified as Mixed comps/TMA ageing error. Another considers the same model 
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specification and inputs as the previous scenario using NIR-NN age compositions but here 

augments ageing error to account for both the TMA ages (e.g., reader and tester) and the 

difference between TMA and NIR-NN ages (involving triplicate outcomes). This scenario was 

identified as Mixed comps/Mixed ageing error. A final scenario was used to examine the effect 

or sensitivity of the choice of the 2013-2018 time period over which the TMA versus NIR-NN 

age composition substitutions were made (Missing comps/TMA error model). Here, the base 

model was simply run by removing age composition data for years 2013-2018. 

We employed Markov Chain Monte Carlo (MCMC) simulation to quantify and compare 

sensitivity of assessment outcomes to the use of NIR-NN versus TMA data sources for age 

composition and ageing error. We specified non-informative uniform priors on all parameters 

except for M, which was empirically derived, approximating a log-normal density (Thompson et 

al. 2020). We performed MCMC on the four different scenarios (Table 24.1) to compare model 

outcomes between ageing methods and assumed ageing errors. Marginal posterior densities 

(MPD) of the key parameters from 900 MCMC iterations (1,000,000 with 1/1,000 thinning and a 

100-iteration burn interval) were compared to evaluate stock assessment model sensitivity. 

 

RESULTS 

 

Ageing error of Pacific cod using the TMA method for the 2013-2018 period (percent 

agreement ± 0 years = 65.3%; CV = 6.96%) was typical of historic data throughout the time 

series. Pacific cod is considered a moderately difficult species to age given the relatively low 

mean age of the sample (~3.9 years) and relatively short lifespan of the stock (90% of ages were 

below 8 years old). There was no indication of relative bias between TMA double read data 
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based on the Evan-Hoenig test of symmetry (p > 0.05). Robust regression of age estimates from 

the two analysts resulted in an r2 of 0.86 and an RMSE of 0.52, indicating that age estimates of a 

second age reader are expected to be within 0.52 years of the first reader 67% of the time. All 

error types estimated from the model resulted in a best fit model (AICc) which was represented 

by a non-linear standard deviation (SD) of the observed error with “true age” (Fig. 24.1). The 

TMA ageing method showed the greatest magnitude error (TMA error; Fig. 24.1) while the 

mixed error was intermediate in magnitude to TMA ageing error or measurement error (FT-NIR 

spectroscopy). Not surprising was that the FT-NIR spectroscopy error was the smallest, 

suggesting that repeatability of age prediction is high even when otolith NIR scanning is 

performed by different operators and on different instruments. 

Spectral data collection from Pacific cod otoliths showed consistently good signal to 

noise, with absorbance increasing within the 7,000 to 4,000 cm-1 wavenumber regions (Fig. 

24.2A). Two distinct groups of raw spectra (Fig. 24.2A) can be seen as a baseline shift that is 

associated with otolith scanning using two different FT-NIR spectrometers (Tango-R vs. MPA 

II). Instrument differences in baseline absorbance are not unusual and otolith spectra were 

harmonized by preprocessing techniques employed prior to modeling (Fig. 24.2B, 24.2D). 

Preprocessed spectra plotted in bivariate space indicate that the vast majority of spectral 

variability is accounted for by the 1st and 2nd principal components. Further, the ‘onion’ 

algorithm extracts roughly the same extent of spectral variability for both the train and test data 

sets (Fig. 24.2C). 

The NIR-NN was trained to extract information out of spectral data, including all 

wavenumbers, before integrating the output with the scaled data block that includes 

corresponding biological data. The data types were ordered according to their importance for 
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prediction in the NIR-NN model using the mean of absolute Shapley values (Fig. 24.3). The 

collective contributions of otolith spectra in the range of 7,000-4,000 cm-1 wavenumbers had the 

highest impact on predicting fish age, followed by fish length and sex. The NIR-NN model 

results show good performance resulting in a high degree of correlation between NIR-NN 

predicted and TMA estimated ages (Fig. 24.3). The NIR-NN model using training data resulted 

in good performance with r2 = 0.93 and RMSE = 0.52 years. Likewise, on the test data set 

(which represents new unseen variability by the model, n = 1,652) the NIR-NN model yielded 

similarly good performance, with r2 = 0.92 and only a slight increase in the RMSE (0.56 years). 

Predicting Pacific cod age using otolith spectra and associated biological data is expected 

to result in age predictions within 0.6 years of the TMA age 67% of the time and within 1.2 years 

98% of the time. Precision associated with NIR-NN predictions (RMSE = 0.56 years) was 

clearly consistent with double reads of the TMA age determination approach, which had an 

RMSE of 0.52 years. Comparing NIR-NN model age predictions with TMA estimated ages, 

Bland-Altman plots showed a high level of consistency of ages from the different methods over 

the range of ages, where the majority of deviations fell within 1.96 SD (Fig. 24.3D). Age 

predictions were highly consistent along a 1:1 line, although there was a very slight under-

prediction for fish greater than 10 years. Very few older Pacific cod ages were observed, and 

therefore predictions may be improved by inclusion of older age fish in the training model. 

A measure of relative bias or differences between ages estimated using TMA and NIR-

NN predictions also showed a very high degree of consistency between ageing methods, except 

for a departure after 9 years of age (Fig. 24.4A). Since so few ages beyond age 9 were available, 

there was insufficient information to evaluate relative differences between ageing methods for 

older fish. Overall, up to 90% of the observations resulted in zero bias between NIR-NN 
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predicted ages and TMA estimated ages, compared to roughly 70% from TMA age estimates 

(Fig. 24.4B). Nearly all estimated or predicted ages were within 1 year of age for both methods 

(Fig. 24.4B). 

Survey age compositions generated from the design-based estimator using data derived 

from TMA and NIR-NN ageing methods were comparable, with only slight variations in 

proportions-at-age (Fig. 24.5). The largest differences in proportions-at-age were for age-3 in 

2018 (TMA = 0.213, NIR-NN = 0.166), age-4 in 2017 (TMA = 0.264, NIR-NN = 0.307), and 

age-4 in 2014 (TMA = 0.139, NIR-NN = 0.092). Similarly, model fits to the age composition 

data had little variation across scenarios, with the largest differences in expected proportion-at-

age being for age-5 in 2018 (TMA comps/TMA error = 0.236, Mixed comps/Mixed error = 0.249, 

Mixed comps/TMA error = 0.235). Only very small differences between age composition 

likelihood were observed, suggesting model fits among these scenarios were equally good (or 

poor). Recent assessments have reported a relatively strong 2013 year-class, seen as age-1 fish in 

the 2014 age compositions. Age compositions for both ageing methods exhibit the movement of 

this year class through the age compositions in subsequent years (Fig. 24.5). 

Marginal posterior densities generated from MCMC of key internal and externally 

derived management parameters among the different scenarios show little difference in the 

highest posterior density (HPD) and kernel densities (Figs. 24.6 and 24.7). Table 24.2 provides 

comparisons of key model parameters over all sensitivity scenarios. The two primary scenarios 

in which NIR-NN age compositions are substituted for TMA age compositions (Mixed 

comps/TMA error and Mixed comps/Mixed error) resulted in nearly identical median values and 

kernel densities for M and lnR0 (Fig. 24.6), but did shift slightly to higher values when NIR 

ageing error was assumed. The only estimated parameter with notable shifts in median value 
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across 1,000 MCMC iterations was Q, which shifted from the most negative values in the TMA 

comps/TMA error scenario to more positive values in other scenarios (Table 24.2). In terms of 

uncertainty, Lmax displayed the highest degree of change in standard deviation despite this change 

being relatively small (TMA comps/TMA error = 3.206, Missing comps/TMA error = 3.765; 

Table 24.2). The years chosen (2013-2018) for data substitution did produce an effect on the 

sensitivity analysis (Missing comps/TMA error), such that kernel densities of key parameters 

shifted to lower median values. The relative change in kernel densities from the Missing 

comps/TMA error scenario was in fact greater than kernel density shifts across scenarios that 

used different age data products (TMA comps/TMA error, Mixed comps/TMA error, Mixed 

comps/Mixed error; Fig. 24.6). 

Similar shifts in median values of the MPDs for derived management quantities such as 

relative spawning biomass (SSB/SSBunfished) and unfished female spawning biomass were 

observed, but in all cases the sensitivity of this change resulted in less and a maximum of a 4% 

probability (Fig. 24.7). Differences in the probability of relative depletion between the NIR-NN 

and TMA age data scenarios and with either ageing error assumption were exceedingly low. All 

model run scenarios resulted in decreased median derived management quantity values and 

standard deviations in comparison to the base model scenario (TMA comps/TMA error; Table 

24.2, Fig. 24.7). The Missing comps/TMA error scenario resulted in the largest reductions in the 

median value of derived management quantities (1.2% reduction for median of SSB0 to 4.8% 

reduction for median of overfishing level OFL) as well as the standard deviation (3.2% reduction 

for SD of SSB0 to 14.3% reduction for SD of 2020 recruitment). The Mixed comps/Mixed error 

scenario resulted in the smallest reductions in the median value of derived quantities (0.2% 

reduction for median of 2020 recruitment to 0.6% reduction for median of OFL) as well as 
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standard deviation (2.2% reduction for SD of OFL to 7.0% reduction for SD of 2020 

recruitment). 

 

DISCUSSION 

 

Fish age determination based on growth patterns visible in otoliths has changed little over 

the last century. While ageing fish using scales can be documented as far back as the early 

1700s, Johannes Reibisch was the first to describe a protocol for ageing fish using otoliths in 

1899 (Jackson 2007). Microscopic counting of the annual growth zones in otoliths was the 

foundation of the ageing method then and is still the basis of age estimation today. FT-NIR 

spectroscopy of otoliths to predict fish age is an emerging technology that may have a 

transformative impact on traditional microscopic age determination. Studies suggest that FT-NIR 

spectroscopy of otoliths may produce efficiency gains by as much as 10x and substantially 

improve repeatability compared to traditional microscopic methods (Helser et al. 2019, Benson 

et al. 2023). Crude estimates of TMA age production rates suggest a throughput of 31 ages per 

person per day for Pacific cod2. In comparison, age predictions from FT-NIR spectroscopy with 

an already calibrated model can produce up to 35-50 ages per hour. Research is underway to 

better quantify time-flow statistics for cost-benefit analysis for both methods. 

Fish otoliths largely comprise the same composition of molecular constituents dominated 

by CaCO3 as aragonite and lesser amounts of organic material (Campana 1999), so it is not 

surprising that other studies applying FT-NIR spectroscopy found wavenumbers in the 7,000 to 

                                                 
 
2 Lambert et al. 2017. Importance of age data collection for stock assessments: a U.S. national perspective. NOAA 
Fisheries, Alaska Fisheries Science Center, Unpublished report.   
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4,000 cm-1 range most informative for fish otoliths (Wedding et al. 2014, Helser et al. 2019b, 

Benson et al. 2020, Passerotti et al. 2020b). Many promising studies that have analyzed FT-NIR 

spectroscopy of otoliths using partial least squares for age prediction have been reported for 

teleost fish (Wedding et al. 2014, Helser et al. 2019a, Helser et al. 2019b, Wright et al. 2021, 

Passerotti et al. 2020b, Healy et al. 2021) as well as chondrichthyan species (Rigby et al. 2016, 

Arrington et al. 2022). For many of them, model performance has been quite good with 

coefficients of determination in the high 80% and even low 90%, and with precision on par with 

TMA precision estimates. Our study, and that of Benson et al. (2023), have coupled FT-NIR 

spectroscopy of fish otoliths and a deep machine learning approach that allowed the network to 

extract important spectral features automatically by utilizing a convolutional layer before 

connecting its output with additional biological or geospatial layers. Using NIR-NN for EBS 

walleye pollock G. chalcogrammus, Benson et al. (2023) reported superior performance, relative 

to classical partial least squares, that achieved not only better predictive skill but also rectified 

nonlinearity at older ages. While we did not compare our EBS Pacific cod NIR-NN model to the 

PLS methods, our model performance achieved similarly good results, with r2 in low 90% and as 

good or slightly better precision compared to TMA. 

Ageing error associated with TMA is well known in fish ageing, and statistical methods 

for quantifying it have been well documented (Beamish and Fournier 1981, Kimura and Lyons 

1991, Campana 2001). The impact of ageing error on the performance of stock assessments has 

also been well documented in the literature, resulting in inappropriate yield projections and 

overfishing (Lai and Gunderson 1987), poorly defined stock-recruitment relationships (Richards 

et al. 1992), and in some cases overly optimistic yield projections (Reeves 2003). Punt et al. 

(2008) articulated the justification and necessity of including ageing error in stock assessment 
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models, widely used today (Methot and Wetzel 2013). Hence, alternative ageing methods used to 

generate age composition data, such as FT-NIR spectroscopy, must also seriously consider such 

sources of error and how to quantify them. Among the ageing error assumptions considered in 

this study, the Mixed error assumption is probably the most realistic for age compositions 

generated from the NIR-NN approach, although we examined an alternative of using TMA error.  

Statistically, the TMA approach gives rise to an estimate of age, whereas the NIR-NN approach 

gives rise to a prediction. The question arises of how best to quantify and propagate uncertainty 

from a predictive model that is trained on data that have inherent error among outcomes. Since 

the standard practice is to incorporate the error specific to the age composition data within the 

stock assessment model, it seems logical that error associated with both TMA ageing and FT-

NIR spectroscopy predictions (no matter what modeling technique is used) should be used, as 

was done with the Mixed comps/Mixed error scenario. It should be noted that ageing bias for 

Pacific cod has yet to be quantified and analyzed within the assessment model. If ageing bias 

exists in TMA, it will also be the case for NIR-NN age predictions. 

Finally, several considerations of this study are warranted. First, the time span of NIR 

data substitution was somewhat narrow relative to the entire range of years over which age 

composition data are used in the assessment. The over 8,000 ages generated from NIR otolith 

scanning from 2013-2018 was a practical consideration. Had resources been available to 

substitute NIR age composition data over the entire time series, might the results have been 

different, particularly during periods of more dynamic change in the population and fishery? 

Maybe not, because the EBS Pacific cod population experienced a rather dramatic change over 

the 2013-2018 period explored in this analysis (Thompson et al. 2020). Cod recruitment reached 

an all-time high in 2013, which was followed by a population size increase to a near record high 
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in 2014 and then to a near record low in 2018 (Thompson et al. 2020). The Missing comps 

scenario, which attempted to measure the “effect size” of the time period, showed the most 

substantive changes in model outputs, but yet the model results among the other scenarios in 

which NIR-NN age compositions were substituted for TMA resulted in minimal differences.  

Our sensitivity analysis showed only minimal differences in model outputs when using 

FT-NIR spectroscopy generated age compositions. Under the B40% minimum depletion threshold 

level, the model suggests the stock in 2020 was at about 52% of unfished female biomass and 

this depiction of stock status did not change under any sensitivity scenario. Key estimated 

parameters and externally derived management quantities were largely unchanged among the 

different scenarios and assumed ageing error structures based on the stock assessment model 

specification used for this sensitivity analysis. However, compared to some assessment models, 

the Pacific cod model only uses age data to a somewhat limited extent. Fishery age compositions 

are currently not used in the assessment. Time varying growth, which may be a biologically 

realistic feature of the population, is not specified. If future Pacific cod stock assessments evolve 

to incorporate more age data for other fleets (fisheries) or add complexity of their use, such as 

conditional age-at-length compositions, further sensitivity analyses of the use of FT-NIR 

spectroscopy generated age data such as this may be warranted. 
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Table 24.1. -- Pacific cod Gadus macrocephalus Stock Synthesis (SS) model specifications and 
scenario descriptions used in the sensitivity analysis. TMA = traditional method of 
ageing; FTNIRS = Fourier transform near infrared spectroscopy. 

 
SS Model Parameter Description 
Lmin Length at minimum age 
Lmax Length at maximum age 
Von Bert K Von Bertalanffy growth coefficient 
Richards Richards growth coefficient 
SD_young_Fem_GP_1 variability for size at age <= minimum age 
SD_old_Fem_GP_1 variability for size at age >= maximum age 
Ln_R0 log of virgin recruitment level 
M Natural mortality 
Q Catchability of survey 
Size selectivity fishery params 5 of 6 double normal selectivity parameters 
Size selectivity survey params 2 of 6 double normal selectivity parameters 
 ln(DM_theta) 3 log theta parameters 

 

Sensitivity Scenario Name Description 
TMA comps/TMA ageing error • TMA age compositions for all years 

• Estimate ageing error 1977-2007 
• TMA ageing error (2-way; read & test 

ages) for all years 2008-2019 
Missing comps/TMA ageing error • TMA age compositions for all years 

• 2013-2018 missing 
• Estimate ageing error 1977-2007 
• TMA ageing error (2-way; read & test 

ages) for all years 2008-2019 
Mixed comps/TMA ageing error • FTNIRS age compositions for 2013-2018 

• TMA age compositions for other years 
• Estimate ageing error 1977-2007 
• TMA ageing error (2-way; read & test 

ages) for all years 2008-2019 
Mixed comps/Mixed ageing error • FTNIRS age compositions for 2013-2018 

• TMA age compositions for other years 
• Estimate ageing error 1977-2007 
• Mixed ageing error (3-way; read, test, 

FTNIRS) for all years 2008-2019 
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Table 24.2. -- Summary statistics for estimated parameters and derived management quantities 
across 1,000 Markov Chain Monte Carlo (MCMC) runs. TMA = traditional 
method of ageing. See Table 24.1 for descriptions of model parameters and text for 
management quantities. 

 
Parameter Scenario Median SD CV 
Lmin TMA comps/TMA error 14.6648 0.39341 0.02681 
 Missing comps/TMA error 14.6454 0.39861 0.02722 
 Mixed comps/TMA error 14.6699 0.41049 0.02796 
 Mixed comps/Mixed error 14.6817 0.41323 0.02815 
Lmax TMA comps/TMA error 111.027 3.20622 0.02883 
 Missing comps/TMA error 112.186 3.76545 0.03349 
 Mixed comps/TMA error 111.813 3.69312 0.03289 
 Mixed comps/Mixed error 111.391 3.55216 0.03179 
Von Bert K TMA comps/TMA error 0.11140 0.00928 0.08314 
 Missing comps/TMA error 0.10779 0.01032 0.09556 
 Mixed comps/TMA error 0.10928 0.01016 0.09313 
 Mixed comps/Mixed error 0.11069 0.01005 0.09089 
M TMA comps/TMA error 0.36364 0.01259 0.03464 
 Missing comps/TMA error 0.35787 0.01204 0.03364 
 Mixed comps/TMA error 0.36248 0.01215 0.03351 
 Mixed comps/Mixed error 0.36356 0.01207 0.03319 
Richards K TMA comps/TMA error 1.52657 0.04497 0.02943 
 Missing comps/TMA error 1.54333 0.04837 0.03135 
 Mixed comps/TMA error 1.53427 0.04802 0.03124 
 Mixed comps/Mixed error 1.53252 0.04826 0.03151 
Q TMA comps/TMA error -0.19012 0.07919 -0.41557 
 Missing comps/TMA error -0.14926 0.07148 -0.47303 
 Mixed comps/TMA error -0.17404 0.07436 -0.42821 
 Mixed comps/Mixed error -0.18258 0.07533 -0.40899 
LnR0 TMA comps/TMA error 13.3122 0.11836 0.00889 
 Missing comps/TMA error 13.2487 0.10959 0.00827 
 Mixed comps/TMA error 13.2955 0.11218 0.00844 
 Mixed comps/Mixed error 13.3096 0.11187 0.00840 
Management quantity Scenario Median SD CV 
OFL TMA comps/TMA error 182,363 22,138 0.120216 
 Missing comps/TMA error 173,475 19,771 0.113215 
 Mixed comps/TMA error 178,285 20,808 0.115564 
 Mixed comps/Mixed error 181,243 21,183 0.115999 
SSB0 TMA comps/TMA error 1,274,570 33,655 0.026394 
 Missing comps/TMA error 1,258,560 32,590 0.025894 
 Mixed comps/TMA error 1,269,815 33,639 0.026521 
 Mixed comps/Mixed error 1,271,135 32,915 0.025868 
SSB2020 TMA comps/TMA error 647,083 58,205 0.089261 
 Missing comps/TMA error 627,444 52,097 0.082814 
 Mixed comps/TMA error 637,056 54,074 0.084511 
 Mixed comps/Mixed error 644,436 54,938 0.084847 
Recruitment TMA comps/TMA error 476,590 58,100 0.120768 
 Missing comps/TMA error 447,298 49,796 0.110445 
 Mixed comps/TMA error 468,742 53,419 0.113134 
 Mixed comps/Mixed error 475,393 54,000 0.112762 
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Figure 24.1. -- Ageing error vectors showing standard deviation (SD) of estimated age relative to 
“true age” from traditional method of ageing (TMA) and Fourier transform near 
infrared spectroscopy (FTNIRS) data inputs. TMA ages are represented by 
differences between reader age and tester age, FT-NIRS is the difference between 
multiple FTNIRS predicted ages from multiple instruments and analysts, and 
TMA-FTNIRS is the difference between tester age, reader age and FTNIRS 
predicted ages. 

  



392 
 

 

 

Figure 24.2. -- Pacific cod Gadus macrocephalus otolith Fourier transform near infrared spectra 
(measured as absorbance) from over 8,000 samples showing (A) raw spectra, 
preprocessed spectra (1st derivative, Savitsky-Golay smoothing) for (B) train and 
(D) test data sets, and (C) principal component analysis (PCA) of otolith spectra 
separated into training and testing data sets using the onion algorithm. 
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Figure 24.3. -- Age predictions from multimodal convolutional neural network (MMCNN) 
model for Pacific cod Gadus macrocephalus from otolith spectra and biological 
data as inputs. Model results are illustrated as the relationship between model 
predictions and traditional age for A) training set with r2 = 0.93 and RMSE = 0.52 
years and B) test data sets with r2 = 0.92 and RMSE = 0.56 years. C) MMCNN 
model importance plot, and D) Bland-Altman plot of difference between methods.   
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Figure 24.4. -- Relative bias or differences between estimated traditional (TMA) ages and 
Fourier transform near infrared (FT-NIR) spectroscopy predicted ages A) with 
respect to age and B) without respect to age. Relative mean bias was expressed as 
the difference between reader and tester age for the TMA method, and difference 
between multimodal convolutional neural network predicted age and final age for 
the FT-NIR method. 
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Figure 24.5. -- Pacific cod Gadus macrocephalus eastern Bering Sea shelf bottom trawl survey 
age compositions (expressed as proportions at age by year) generated using a 
design-based estimators and Stock Synthesis (SS) model fits from three scenarios 
based on traditional (TMA) and Fourier transform near infrared spectroscopy (FT-
NIRS) ageing methods and associated ageing errors. Age compositions are shown 
as bars and SS model fits to age comps are shown as lines.  
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Figure 24.6. -- Marginal posterior kernel densities of internally estimated Pacific cod Gadus 
macrocephalus Stock Synthesis model parameters (Lmax, M, Q, and LnR0) from 
1,000 Markov Chain Monte Carlo simulations based on four different model 
scenarios comparing traditional and Fourier transform near infrared spectroscopy 
age composition and assumed ageing errors. 
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Figure 24.7. -- Marginal posterior kernel densities of externally derived management quantities 
(overfishing limit OFL, recruitment, relative spawning stock biomass 
(SSB/SSBunfished), and unfished female SSB) in the Pacific cod Gadus 
macrocephalus Stock Synthesis model from 1,000 MCMC simulations based on 
four different model scenarios comparing traditional and Fourier transform near 
infrared spectroscopy age composition and assumed ageing errors.  
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INTRODUCTION 

 

 Modern, age-structured stock assessment models require age data of sufficient quality 

(i.e., high precision and accuracy), quantity (i.e., sample size), and representativeness (i.e., 

composition). Standard protocols for developing age estimates from fish ageing structures 

(primarily otoliths) require substantial sample processing procedures that can take several 

minutes per sample over multiple days. Thus, the number of samples available for input into 

stock assessments is dependent upon the processing power of ageing laboratories, while the 

quality of age estimates is dependent upon the ageing expertise of fishery scientists and species-

specific otolith section clarity. Fourier transform near infrared (FT-NIR) spectroscopy has the 

potential to greatly increase sample processing efficiency in production ageing laboratories. Used 

in the food and drug industry for decades, FT-NIR spectroscopy has only recently been applied 

to ageing fish (e.g., Robins et al. 2015, Helser et al. 2019b, Passerotti et al. 2020b), but with 

great promise. With FT-NIR spectroscopy, all otoliths of interest are irradiated with near infrared 

light to collect spectral absorbance data. A subset of the scanned otoliths are sectioned and aged 

with traditional methods. The observed ages are paired with their spectral absorbance data, and a 

model is developed to predict age for the remainder of otoliths from only the spectral data. 

Considering that a spectral scan requires approximately one minute to complete, there is 

enormous potential for increasing production ageing efficiency with this approach. However, the 

effects of utilizing age estimates generated from FT-NIR spectroscopy on stock assessment 

outputs need to be explored. Our objective was to evaluate the sensitivity of the Gulf of Mexico 

gray snapper (Lutjanus griseus) stock assessment to FT-NIR spectroscopy-predicted ages by 
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comparing assessment model outputs under different simulation scenarios in the Stock Synthesis 

(SS) framework. 

 

METHODS 

 

Sample Selection, Model Building, and Simulations 

 

 Gray snapper otoliths were selected from the archive at the National Marine Fisheries 

Service Panama City Laboratory from the years 2016-2020, with a target sample size of 300 per 

year. Each otolith was placed distal side up on a quartz sampling window of a Bruker Multi-

Purpose Analyzer II FT-NIR spectrometer to collect spectral scans of diffuse reflectance (Robins 

et al. 2015, Helser et al. 2019b). Samples were irradiated with near infrared light at 16 cm-1 

resolution with absorbance measured in wavenumbers (cm-1). Following scanning, otoliths were 

processed using standard protocols and sectioned on a Hillquist high-speed saw to produce a 

thin-section (~0.5 mm) for traditional ageing. Only whole, clean, unbroken, left otoliths were 

sampled to maintain consistency among FT-NIR scans. Observed ages were input along with 

paired spectral data into chemometric software (OPUS, v8.5, Bruker Optics) to develop 

predictive models using partial least squares regression (Chen and Wang 2001). Individual 

samples were selected from the calibration set iteratively and cross-validated to develop the best 

possible predictive model based on root mean square error (RMSE) and the ratio of prediction 

deviance (RPD). The predictive model built from the calibration set was then applied to the 

validation set (i.e., the remaining 70% of scanned otoliths) to predict age from spectral scans 
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without including the observed age estimate. Ages predicted with FT-NIR spectroscopy were 

then compared to their observed age estimate to compare accuracy and precision.  

 

Simulation Set 1 

 

The FT-NIR spectroscopy-predicted age estimates from the calibration and validation 

sets were substituted for their corresponding observed ages in the dataset used to assess gray 

snapper in the most recent stock assessment model (Southeast Data Assessment and Review 75). 

Ages without an FT-NIR spectroscopy-predicted age were unchanged and retained in the data. 

The assessment model was rerun to estimate a new base model and then run in the R package 

ss3sim (Anderson et al. 2014) with n = 10,000 iterations. The ss3sim function fits relevant 

distributions to the data in the operating (base) model from which to resample the data to the 

specified number of iterations and reruns the model estimating procedure (estimation model). 

The SS output of interest was compared to the base model and summarized across all iterations 

as relative error. Model outputs including spawning stock biomass (SSB), fraction unfished, 

B/BMSY (ratio of observed biomass to biomass that would provide maximum sustainable yield, 

MSY), F/FMSY (ratio of observed fishing mortality to the fishing mortality rate that would result 

in MSY), depletion, SSB at MSY, and unfished biomass and were compared between the base 

assessment model and the model with substituted FT-NIR spectroscopy-predicted ages. For the 

base model, ageing error was estimated by comparing observed ages from the primary reader to 

an expert reader and assuming no bias in the expert reader’s age estimates. For the model with 

FT-NIR spectroscopy-predicted ages substituted for observed ages, ageing error was estimated 

by comparing the FT-NIR spectroscopy-predicted ages to the expert reader’s age estimates. Age 
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data for 2016-2020 contained both observed ages and FT-NIR spectroscopy-predicted ages; thus, 

applying FT-NIR spectroscopy ageing error was a conservative approach given that observed 

ages had less imprecision than FT-NIR spectroscopy-predicted ages.   

 

Simulation Set 2 

 

Due to the low number of FT-NIR spectroscopy-predicted ages (~3-5%) relative to the 

number of observed ages in each year from 2016-2020, a second set of simulations was 

conducted with resampled FT-NIR spectroscopy ages. The FT-NIR spectroscopy-predicted ages 

were resampled (random with replacement) so that year-specific sample sizes of FT-NIR 

spectroscopy-predicted ages were equal to the number of observed ages in each year (Table 

25.1). For example, FT-NIR spectroscopy-predicted ages for 2016 (n = 481) were resampled to 

equal the number of observed ages from 2016 (n = 3,643). Samples from the calibration and 

validation set were included in the resampling pool to maximize the age range and sample size 

comprising the resampled dataset. Each FT-NIR spectroscopy-predicted age was resampled with 

all of its corresponding data (e.g., observed age). The observed ages that corresponded to the 

resampled FT-NIR spectroscopy-predicted ages were used to estimate a new base model. The 

FT-NIR spectroscopy-predicted ages were then substituted for all the observed ages, and the SS 

model was rerun to get new parameter estimates. The model was then run through the simulation 

framework for comparison to the base model output from the simulation framework. The model 

with resampled observed ages (primary vs. expert age comparisons) and the model with the 

resampled, fully substituted FT-NIR spectroscopy-predicted ages (FT-NIR spectroscopy vs. 

expert age comparisons) was specified with the same ageing error matrices used in simulation set 
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1. As with the first set of simulations, only data from 2016-2020 were altered, while data from 

years prior to 2016 remained unchanged. Individual SS model outputs as well as simulation 

outputs were compared with relative error. Output was not compared between simulation sets 1 

and 2, only within each simulation set. 

 

RESULTS 

 

 In total, 1,419 gray snapper otoliths were available for FT-NIR spectroscopy scanning 

with n = 420 samples comprising the calibration set and n = 996 samples comprising the 

validation set (Table 25.1). Observed ages ranged from 2 to 29 yr, while FT-NIR spectroscopy-

predicted ages ranged from 0 to 26 yr. The prediction model tended to overestimate age for fish 

<10 yr and increasingly underestimate age fish >15 yr. The relationship between the observed 

ages and FT-NIR spectroscopy-predicted ages in the calibration set had an r2 of 0.92, an RMSE 

of the cross validation of 1.5 yr, and an RPD of 3.5. The validation set had an r2 of 0.897, an 

RMSE of prediction of 1.6 yr, an RPD of 3.1, an average percent error (APE) of 7.6, and an 

average coefficient of variation (ACV) of 10.7 (Fig. 25.1).  

Outputs between assessment models with primary reader ages versus FT-NIR 

spectroscopy-predicted ages were very similar in single model runs (Fig. 25.2), indicating that 

utilizing FT-NIR spectroscopy-predicted ages had a negligible effect on reference point 

estimates of biomass or fishing mortality. For example, relative error (RE) in SSB ranged from 

0.002 to 0.007 across all years. Greater differences in reference points were observed between 

single models that used the resampled datasets, but RE was still low (RE ranged from -0.072 to 

0.093 in SSB across all years; Fig. 25.2). The RE in B/BMSY (≤10%) was higher than in F/FMSY 
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(<5%), but median estimates were very similar between models with FT-NIR spectroscopy-

predicted ages either partially (e.g., Fig. 25.3A vs. 25.3B) or fully substituted (e.g., Fig. 25.3E vs. 

25.3F) for observed ages. Similarly, summary data indicated RE in median estimates of 

depletion, SSB at MSY, and unfished biomass were very similar within and between simulation 

sets when FT-NIR spectroscopy-predicted ages were substituted, partially or fully, for observed 

ages (Fig. 25.4). The RE in depletion estimates was similarly positively biased in summary data 

for sets 1 and 2; RE in median estimates of SSB at MSY and unfished biomass were unbiased in 

both simulation sets (Fig. 25.4). 

 

DISCUSSION 

 

 FT-NIR spectroscopy-predicted ages were generally similar to observed ages but with 

greater imprecision and relatively low bias in the younger and older age classes. FT-NIR 

spectroscopy-predicted ages were overestimated for ages 2-5 yr and underestimated for ages >15 

yr. The APE for FT-NIR spectroscopy-predicted ages versus expert reader ages was nearly three 

times higher than error between primary and expert readers. Imprecision of FT-NIR 

spectroscopy estimates for young ages, which had extremely high between-reader agreement, has 

a disproportionate impact on APE. Assessment output can be sensitive to imprecision in younger 

age estimates due to cohort smoothing of infrequent strong year-classes. However, bias in older 

ages has minimal impact on assessment outputs because older fish represent relatively few 

individuals in the landings or population, and most are contained in the plus group in age 

composition data for this species (≥21 yr). While, greater imprecision in FT-NIR spectroscopy-

predicted ages is a concern, the assessment model was insensitive to this source of error, 
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especially when the FT-NIR spectroscopy-predicted ages comprised a low proportion of age 

samples. Results of simulation set 2 indicated low sample sizes of FT-NIR spectroscopy ages did 

minimize their impact on assessment outputs, but relative error was still low (<10%) when FT-

NIR spectroscopy-predicted ages were fully substituted for their corresponding observed age for 

the last five years of the dataset (2016-2020). Generally, greater imprecision in age estimates will 

increase uncertainty in and possibly shift assessment outputs, but the stock assessment model 

appears robust to the increased imprecision associated with FT-NIR spectroscopy-predicted ages, 

at least on the scale of imprecision examined with gray snapper. Scanning additional otoliths 

would allow us to fully evaluate effects of utilizing FT-NIR spectroscopy-predicted ages versus 

observed ages by better refining imprecision between traditional and FT-NIR spectroscopy 

methods. Furthermore, scanning a larger number of younger and older individuals may reduce or 

remove the bias observed for these age classes at the sample sizes used in this study. 
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Table 25.1. -- Number of primary reader versus Fourier transform near infrared (FT-NIR) 
spectroscopy-predicted ages per year from 2016 to 2020 in each dataset. The 
simulation 1 dataset contains the FT-NIR spectroscopy-predicted ages (n = 999) 
from the validation set of scanned otoliths, while the simulation 2 dataset contains 
the FT-NIR spectroscopy-predicted ages from the calibration and validation sets 
resampled to match the year-specific sample sizes aged by the primary reader. 
Ages from prior to 2016 were unchanged in both datasets. FT-NIR spectroscopy-
predicted ages were resampled with all corresponding data so that each had a 
paired observed age for re-estimating the base model that utilized resampled the 
data. 

 

Simulation 1 dataset Year 2016 2017 2018 2019 2020 

Observed ages n 3,643 2,773 3,795 4,109 1,861 
NIRS-predicted ages n 347 215 136 220 78 

       
Simulation 2 dataset             

Observed ages n 3,643 2,773 3,795 4,109 1,861 
NIRS-predicted ages n 3,643 2,773 3,795 4,109 1,861 
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Figure 25.1. -- Observed (expert reader) age (yr) versus Fourier transform near infrared 
spectroscopy (NIRS) predicted age (yr) for the A) calibration and B) validation 
sets of gray snapper (Lutjanus griseus) otoliths. Panels C and D indicate age-
specific means (with 95% CIs) for the calibration and validation sets, 
respectively. NIRS-predicted ages were rounded to the nearest integer age. 
Sample sizes are shown at the top left of each panel. 
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Figure 25.2. --  Single model output for A) spawning stock biomass (SSB, tons) and B) fraction 
unfished by year from each gray snapper (Lutjanus griseus) stock assessment 
model used in simulation sets 1 or 2. Models include the 1) primary reader ages 
(Base), 2) Fourier transform near infrared spectroscopy, FT-NIRS (FT-NIRS 
substituted ages), 3) resampled primary reader ages (Res. base), or 4) fully 
substituted, resampled FT-NIRS-predicted ages (Res. FT-NIRS). Models 1 and 2 
should not be compared with models 3 and 4 as they utilize different datasets but 
are shown together for simplicity. Color-corresponding shaded regions indicate 
model uncertainty (95% CI) in the estimate of SSB or fraction unfished.  
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Figure 25.3. -- Relative error in reference points (B/BMSY or F/FMSY) from simulation set 1 (observed vs. Fourier transform near 
infrared spectroscopy (FT-NIRS)-predicted ages; Panels A-D) or simulation set 2 (resampled observed vs resampled 
FT-NIRS-predicted ages; Panels E-H). Solid black lines show the median values while the dashed lines indicate the 
95% quantiles for each set of simulation runs (n = 10,000 iterations).
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Figure 25.4. -- Boxplots of relative error in median values for model outputs (depletion, 
spawning stock biomass SSB at maximum sustainable yield MSY, or unfished biomass) from 
gray snapper (Lutjanus griseus) stock assessment models in A) simulation set 1 (primary reader 
ages vs. substituted Fourier transform near infrared spectroscopy (FT-NIRS)-predicted ages) and 
B) simulation set 2 (resampled primary reader vs fully substituted, resampled FT-NIRS-predicted 
ages). Box ends indicate the 25th and 75th quantiles while whiskers indicate the 5th and 95th 
quantiles. The solid black line on each box indicates the median value while red dashed lines 
indicate the 0 value of relative error.  
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INTRODUCTION 

 

 Fish age data are a critical component of fisheries stock assessment models. Every year, 

the Age and Growth Program at the Alaska Fisheries Science Center (AGP-AFSC) is tasked with 

providing upwards of 30,000 age estimates to support stock assessments of commercially 

important groundfish species in the federal waters of Alaska. Historically, the AGP-AFSC has 

met these requirements through microscopic examination and visual interpretation of otolith 

growth patterns, but we are in the process of implementing the application of Fourier transform 

near infrared (FT-NIR) spectroscopy to rapidly predict age from otolith spectral scans for some 

of our key stocks. Models that predict age from FT-NIR spectra of fish otoliths are reliant on 

high-quality reference age data. The AGP-AFSC has long had in place a framework to maintain 

quality control and assurance of fish age data (Kimura and Anderl 2005), a process that will 

continue following adoption of the FT-NIR spectroscopy method to check model performance 

and preserve consistency in reference information over time. Here, using bottom-trawl survey 

collections of walleye pollock (Gadus chalcogrammus) otoliths from the eastern Bering Sea as 

an example, we describe how traditional (microscopic) age estimates are generated and vetted by 

the AGP-AFSC prior to being included in predictive models of age from FT-NIR spectra (Helser 

et al. this volume-a). 

  

METHODS 

 

 Otoliths were collected from walleye pollock during the 2019 and 2021 AFSC Resource 

Assessment and Conservation Engineering (RACE) summer bottom trawl surveys in the eastern 
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Bering Sea and preserved in glycerin-thymol solution until age determination in the laboratory. 

Otoliths were aged from the otolith surface or using the break-and-burn technique, wherein 

otoliths are sectioned transversely through the core using a Buehler Isomet low-speed saw and 

heated using an alcohol burner or toaster oven to enhance contrast between growth zones (Matta 

and Kimura 2012). Otolith annuli were enumerated and recorded as integer ages in the AGP-

AFSC database, AGE3. 

 Otoliths were assigned an initial age estimate (termed the “Read Age”) by age readers 

that had prior experience and had demonstrated proficiency in ageing walleye pollock. A random 

test subsample of 20% was aged independently by a second experienced age reader (“Test Age”) 

to evaluate precision and bias between readers (Kimura and Anderl 2005). Because survey 

otolith collections are rather large, they were split into sub-collections among several reader-

tester pairs in each year. The precision statistics percent agreement (PA), average percent error 

(APE; Beamish and Fournier 1981), and Chang’s coefficient of variation (CV; Chang 1982) 

were calculated. Bias was evaluated statistically using Bowker’s test of symmetry (Bowker 1948, 

Kimura and Anderl 2005) and visually using contingency tables and age bias plots (Campana 

1995). Discrepancies between readers and testers were discussed and resolved. In cases where 

systematic differences were detected, specimens were re-aged by the reader and reevaluated by 

the tester as a data check. Any ages that were reconciled to an age that differed from the original 

Read Age were indicated as a separate field (“Update Age”) in AGE3. Upon completion of age 

reading, all ages were finalized. In cases where there was an Update Age, it became the “Final 

Age”; otherwise, the Read Age was accepted as the Final Age. 

 Prior to releasing age data to end users, length-at-age observations were graphically 

examined for potential outliers. Otoliths identified as outliers were reexamined by the reader to 
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determine if there were any obvious age reading errors and compared to otoliths from fish of 

similar body length to ascertain instances of collection recording error at sea; corrections were 

made as necessary, and fast- or slow-growing fish were noted in AGE3. One last inspection was 

made on each age collection by the production team lead to ensure that Final Age estimates were 

satisfactory. The team lead examined test results to ensure that the level of precision was 

acceptable and that any biases were addressed, and also confirmed that dominant year classes 

were consistent with previously aged collections. Following the team lead’s assessment, Final 

Age data were provided to the RACE survey team and stock assessment scientists to perform 

age-length expansions and incorporate age information into the statistical age-structured model 

for the Bering Sea walleye pollock stock (Ianelli et al. 2022). 

 

RESULTS 

 

 The 2019 and 2021 Bering Sea walleye pollock RACE bottom trawl otolith collections 

were split into smaller sub-collections of ten and seven parts, respectively. Sub-collections 

consisted of 78-280 otolith pairs and comprised a variety of reader-tester combinations. Readers’ 

experience level in walleye pollock age determination varied from <1 year to over 30 years, and 

all testers had at least 2 years of experience. 

The overall precision between paired readings was higher in 2019 (PA = 65%, APE = 

3.19%, CV = 4.51%) than in 2021 (PA = 56%, APE = 4.34%, CV = 6.14) (Table 26.1). This was 

likely attributable to several factors: the average age of the 2021 survey collection was older 

(6.44 years for the full collection, compared to 5.87 years in 2019), the growth patterns in this 

year were judged to be more difficult to interpret due to checks and unusual amounts of growth 
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on the otolith edge given the time of capture, and one of the age readers in 2021 was relatively 

new at walleye pollock age determination. During the age determination process, a bias was 

detected between the new reader and her testers on the two age sub-collections she was tasked 

with reading. Other experienced age readers were consulted to provide advisory ages, and it was 

agreed that the tester ages were likely more reliable. The bias appeared to be limited to 

specimens approximately 6 years and older; consequently, the reader re-aged all untested 

specimens that were originally aged as ≥6 years old, and the testers aged an additional 20-50% of 

these re-aged specimens as a quality control check. Ages were reconciled to Final Age estimates 

based on these results. The effects of the testing and reconciliation process are evident looking at 

the pooled test sample results for 2019 and 2021 (Fig. 26.1). Figure 26.1a shows paired Read and 

Test Age estimates, with a clear bias occurring after age-8 for the 2021 collection that was also 

confirmed with Bowker’s test of symmetry (Table 26.1). Figure 26.1b shows paired Test and 

Final Age estimates, where there is no evidence of systematic bias (Bowker’s χ2 = 22.25, df = 17, 

p = 0.18). 

 Despite the difficulty associated with visual age interpretation for these samples, overall 

precision between reader and tester in both years was considered satisfactory based on 

comparison to precision values from previous historical collections (Fig. 26.2). Furthermore, age 

readers successfully identified the dominant 2013 year class (Ianelli et al. 2022) in both 

collection years (Fig. 26.3), providing corroborative support for the age estimates (Kimura et al. 

2006). Estimated length-at-age was similar in both 2019 and 2021 (Fig. 26.4). In total, 20 

observations were identified by age readers as outliers and were deemed to represent fast- or 

slow-growing fish. Only two observations were identified as probable collector errors at sea 

based on the size of the otolith relative to the recorded fish length. 
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DISCUSSION 

 

 This example illustrates the power of the random test subsample as an early detector of 

problems with age interpretation prior to providing data to end users. Further, splitting otolith 

collections into sub-collections among multiple readers and testers can reduce overall bias while 

providing data to end users in a timelier manner. As the AGP-AFSC workforce ages and 

employee onboarding and retention is becoming increasingly hampered by budgetary constraints, 

these tools are perhaps our best assets in terms of maintaining high quality age data. Continuing 

the test subsample protocol will also ensure consistency in reference age data and can quantify 

prediction error following implementation of the FT-NIR spectroscopy method (Helser et al. this 

volume-a). 

 The AGP-AFSC is currently investigating making slight improvements to how we 

evaluate quality and check traditional age data for errors. We will continue to calculate PA, APE, 

and CV and to visually assess bias, but we may discontinue Bowker’s test of symmetry in favor 

of McNemar’s and Evans and Hoenig’s tests of symmetry, which have recently been shown to 

outperform Bowker’s test under certain scenarios (McBride 2015, Nesslage et al. 2022). We are 

also investigating ways to more objectively detect age-length outliers. 

 In addition to the quality control procedures outlined in this case study, our program also 

employs several forms of quality assurance for assessed Alaska stocks. Prior to producing age 

estimates, new age readers are trained extensively using a combination of physical reference 

collections, annotated image libraries, and written and visually recorded species-specific age 

determination manuals. All new age readers are initially tested at a rate of 100% until they 

become proficient at ageing a given species. The AGP-AFSC is also an active participant in the 
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Committee of Age Reading Experts (CARE), a coalition of international, state, and federal 

agencies from the U.S. West Coast and Canada. The CARE group conducts biennial meetings 

and performs regular blind structure exchanges to standardize and maintain consistency in age 

determination methodology across laboratories. Finally, the AGP-AFSC has completed a number 

of age verification and validation studies to assess and quantify accuracy of our age estimates for 

assessed stocks, including for walleye pollock (Kastelle and Kimura 2006, Kimura et al. 2006), 

the subject of the largest commercial fishery in Alaska (Ianelli et al. 2022). 

 Though implementation of the FT-NIR spectroscopy method will result in smaller 

numbers of traditional microscopic age estimates, we anticipate that the general workflow for 

maintaining quality control of the reference age estimates will remain much the same. The AGP-

AFSC will continue to traditionally age and test subsample a certain percentage of otolith 

collections to evaluate precision and bias in reference age data and to check FT-NIR 

spectroscopy model prediction performance. In this way, we can ensure consistency of age 

estimates as we transition to this new technology.  
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Table 26.1. -- Paired otolith age reading results for walleye pollock Gadus chalcogrammus from 
the 2019 and 2021 Bering Sea bottom trawl survey. Year is year of collection, n is 
the number of paired readings, 𝑇𝑇 is the average tester age, PA is percent 
agreement, APE is the mean average percent error, CV is the mean Chang’s 
coefficient of variation, and χ2, df, and p are the test statistic, degrees of freedom, 
and p value for Bowker’s test of symmetry. 

 

Year n 𝑇𝑇 PA (%) APE (%) CV (%) χ2(df) p 
2019 307 5.86 64.82 3.19 4.51 23.69 (17) 0.128 
2021 359 6.57 56.27 4.34 6.14 50.09 (28) 0.006 
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Figure 26.1. -- Comparisons of Read and Test Age (a) and Final and Test Age estimates (b) for 

walleye pollock Gadus chalcogrammus otoliths collected from the eastern Bering 
Sea bottom trawl survey in 2019 and 2021. The black solid diagonal lines 
represent a 1:1 relationship. The red dashed lines represent fitted generalized 
additive models. The size of the points represents the number of observations. 
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Figure 26.2. -- Comparison of reader agreement metrics between the 2019 (purple), 2021 
(yellow), and historical collections of walleye pollock Gadus chalcogrammus 
(gray points). Average Test Age is shown versus a) percent agreement and b) 
mean values of Chang’s coefficient of variation (CV). The dashed lines and gray 
areas indicate 95% and 99% confidence ellipses, respectively. Blue lines indicate 
fitted generalized additive models (GAMs). Points outside the ellipse but above 
the GAM in the case of percent agreement or below the GAM in the case of CV 
would still be desirable outcomes because they indicate better precision than 
expected for this species. 
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Figure 26.3. -- Finalized age distributions of walleye pollock Gadus chalcogrammus otoliths 
collected from the 2019 and 2021 bottom trawl surveys in the eastern Bering Sea. 
Dashed red lines represent the mean age values in each year. 
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Figure 26.4. -- Observations of length at age fitted with von Bertalanffy growth functions for 
male (top panel) and female (bottom panel) walleye pollock Gadus 
chalcogrammus from the 2019 (purple) and 2021 (yellow) eastern Bering Sea 
bottom trawl survey. 
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INTRODUCTION 

 

Implementation of Fourier transform near infrared (FT-NIR) spectroscopy to obtain fish 

ages for stock assessment requires rigorous quality assurance and quality control (QA/QC) 

practices to ensure that new data sources maintain the caliber of traditional age data. Unlike 

traditional ageing approaches with established QA/QC protocols (Bland and Altman 1986, 

Kimura and Lyons 1991, Matta and Kimura 2012, McBride 2015, Ogle et al. 2021), spectral data 

for fish age prediction lack well-defined best practices. Additionally, fish ages derived from FT-

NIR spectroscopy require spectral acquisition from otoliths and subsequent calibration model 

development (Helser et al. 2019b), eliciting the need for QA/QC at multiple junctures and 

increasing the potential to propagate error related to data quality. 

Quality assurance and quality control of spectral data must address several potential issues:  

 

(1) Spectral quality related to the specific sample such as crystallization, broken otoliths, or 

tissue remnants obscuring the otolith. 

(2) Spectral quality related to instrument issues such as instrument drift, maintenance 

requirements, or malfunction. 

(3) User errors such as sample presentation on the scan window or data entry errors. 

(4) Differentiation of unusual spectra that expand the data domain and may be important 

for inclusion in the calibration model for age prediction (Wise and Roginski 2015). 

 

Issues 1 and 2 can primarily be recognized through visualization and analysis of spectra 

alone to identify unusual patterns and outliers (Pomerantsev and Rodionova 2014). Issues 3 and 
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4 may require exploration of spectra in relation to other data such as age or body length to 

recognize mismatches between spectra and specimen information (Rodionova and Pomerantsev 

2020), an approach that is often applied to traditional age data (see Matta et al. this volume-a).  

With the goal of developing QA/QC tools to address the four issues outlined above, we 

present a first step toward standardized QA/QC practices and reporting for spectral data 

acquisition prior to calibration model development. We also offer suggestions for next steps to 

obtain data from spectral outliers and considerations for unusual (henceforth, “extreme”) spectra 

that do not qualify as outliers. The proposed best practices build from user experience throughout 

the National Marine Fisheries Service-funded strategic initiative, particularly at the Alaska 

Fisheries Science Center (AFSC), and borrow insights from the spectroscopy discipline as well 

as QA/QC of traditional age data. 

 

METHODS 

 

We present a case study using walleye pollock (Gadus chalcogrammus) collected during 

fishery-independent surveys conducted by the AFSC in the Bering Sea from 2014-2021 to 

demonstrate FT-NIR spectra QA/QC. Fish were measured (fork length) at sea and traditional age 

data were collected following standard protocols (Matta and Kimura 2012). Spectra were 

collected from otoliths using a Bruker MPA II FT-NIR spectrometer (Bruker Optics, Ettlingen, 

Germany) with a wavenumber range between 11,500 to 4,000 cm−1 and a 22-mm diameter 

sample window. An a priori decision was made to focus only on fisheries independent data and 

spectral data collected from a single spectrometer. While datasets obtained from multiple 

spectrometers and data sources can be combined for analysis, fishery-independent and dependent 
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data may encompass different data domains (e.g., fish size or age), and spectra collected from 

different instruments may require additional data processing (Oliveri et al. 2013). Since the goal 

of QA/QC is to identify poor quality data with scrutiny, we opted to exclude these extraneous 

and potentially confounding factors from the work flow during this initial development. Future 

work could evaluate the inclusion of spectra from different instruments and from fishery-

dependent surveys. Data were collected with 64 scans per sample, a resolution of 16 cm−1, and a 

scanner velocity of 7.5 kHz. Detailed scan methods and sample presentation are presented in 

Benson et al. (2020). Wavenumbers >7,500 cm−1 are primarily noise and were excluded from the 

analyses. For analyses with pre-processed data, a Savitsky-Golay smooth (first-derivative, 17-

point, 2nd order polynomial; Benson et al. 2020) was used. 

QA/QC practices (see Fig. 27.1 for schematic) were developed using multivariate 

analyses that are frequently applied to spectral data due to data multicollinearity: principal 

component analysis (PCA) and partial least squares regression (PLS) (Carrascal et al. 2009, 

Haenlein and Kaplan 2004, Kvalheim 2010). PCA is an unconstrained ordination technique that 

reduces dimensionality in the spectral dataset, whereas PLS decomposes both X (spectra) and Y 

(response variable) matrices while constraining the components to maximize covariance between 

X and Y. PCA and PLS provide complementary information about spectral data for QA/QC. 

PCA potentially addresses issues 1 and 2 (outlined above) by providing a view of spectral 

characteristics. PLS potentially addresses issue 3 and 4 (outlined above) by offering additional 

information about whether new spectra relate to a meaningful characteristic (response variable) 

in an expected way. For example, traditional age data may not be available for newly acquired 

spectral data, but relationships between spectra and fish length, which is presumed to increase 
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with age, should follow a consistent trend among all data sets and may provide a QA/QC check 

in the absence of age data. 

Both PCA and PLS QA/QC are context dependent such that outlier spectra may only be 

identifiable when they are compared with other data. This is particularly true for potential 

instrument issues that may affect a large portion of a dataset or the majority of recently scanned 

data. Therefore, we developed QA/QC practices that compare “new” data with previously 

collected spectra. To emulate a typical data collection process, we selected 2019 and 2021 as 

focal years that represent “new” data. We then built PCA and PLS models from data excluding 

each focal year in turn, using the larger dataset from 2016-2021. For PCAs, meaningful 

components were selected based on the Broken Stick Model (Legendre and Legendre 2012), or if 

only the first principal component met the criteria, then the first two were retained in the PCA. 

When FT-NIR spectroscopy is operationalized, “new” spectral data lack paired age data 

from traditional methods. Therefore, we built our base QA/QC PLS models (on all but “focal” 

years) to relate spectra with fish length. Optimal components for PLS models were selected by 

comparing root mean square error of cross validation among models. If the optimal number of 

components exceeded 10, then components were further reduced by selecting only those that 

explained greater than 0.5% of the variability in fish length. This further reduction in 

components reduced model overfitting (modeling noise in the spectral data), but alternative 

approaches for selecting components should be explored in future studies. We retained all 

wavenumber variables >7500 cm−1 in the final models rather than incorporating variable 

selection (Farrés et al. 2015) because the focus of this analysis was not to optimize length 

prediction, but rather to provide a benchmark for assessing “new”, incoming spectral data 

quality. Outliers were also removed from the base PLS model dataset following the iterative 



433 
 

procedures using the “robust” approach outlined in (Rodionova and Pomerantsev 2020). This 

was to ensure that PLS models for comparison of “new” data were representative of length-

spectra relationships. These same outliers were excluded from the PCA dataset so that the both 

baseline PCA and PLS models contained equivalent data. We then utilized the respective PCA 

and PLS models that excluded our focal years to predict (or project in the case of PCA) our new 

spectral data and determine outliers (Fig. 1). 

PCA and PLS were paired with multivariate distance metrics (Hotelling’s T2 and Q 

residuals) and comparisons of observed versus predicted values (henceforth, Y-distance) to 

quantitatively determine extreme and outlier data points in “new” scan data (Legendre and 

Legendre 2012, Wise and Roginski 2015). Hotelling’s T2 is a multivariate extension of a 

Student’s t-test and provides information about how far a data point is from the center scores of a 

PCA or PLS model. Q residuals are the magnitude of variation (distance) between the actual data 

and the model predictions (PCA or PLS) in projected space. Y-distance applies to only PLS since 

PCA is not a predictive modeling approach. Extreme and outlier spectra were defined using 

outlier analyses, following Pomerantsev and Rodionova (2014) for PCA and Rodionova and 

Pomerantsev (2020) for PLS as implemented in R package mdatools (Kucheryavskiy 2020b) 

using statistical moments (mean and standard deviation) and a 5% significance threshold for 

extreme spectra and 1% threshold for outliers based on a chi-square distribution. Analyses were 

conducted using R statistical software (R Core Team 2023) using packages “prospectr” (Stevens 

and Ramirez-Lopez 2022), “mdatools” (Kucheryavskiy 2020a), and “opusreadr2” (Baumann et 

al. 2023). Standardized QA/QC reporting for record keeping and reproducibility were developed 

using Quarto implemented via Posit (https://docs.posit.co/). 

 

https://docs.posit.co/
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RESULTS AND DISCUSSION 

 

 Outlier detection case studies for Bering Sea walleye pollock from 2019 and 2021 

highlight the utility of employing multiple tools to discern spectral data quality. We present a 

detailed description and example of interpretation of the QA/QC process from the 2021 dataset. 

We do not discuss the 2019 dataset in detail, but an example QA/QC draft report using the 2019 

dataset is included in Appendix A of these proceedings. 

 

Dataset Metadata 

 
 QA/QC reporting begins with a summary of metadata for the “new” scans. This includes 

the total number of scans, the number of scan sessions, and the number of scans per session (see 

Appendix A Tables A1 and A2 for examples). At the AFSC, scan sessions typically refer to a 

group of samples that were scanned by a single individual. For implementation of the QA/QC 

procedure, each scan session could be checked upon completion and/or QA/QC procedures can 

be implemented for a full collection year once all sessions are complete. This decision may 

depend on scanning timelines or collection sizes for different species. For the 2021 dataset, there 

were a total of 1,500 scans and 7 scan sessions that range in sample size from 133-277 otoliths, 

along with a small proportion of otoliths that were unscannable or had other identified problems 

such as damage, crystallization, or dried tissue on the otolith. 
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QA/QC Using PCA – 2021 Collection Year 

 
PCA plots of unprocessed spectra provide an overview of whether “new” scan data 

ordinate differently than previous scans. Separation by length quantile for PCAs minimizes the 

number of obscured data points and allows for a visual representation of whether length classes 

differ among “new” and “old” scans. For the 2021 data, PCA data clouds from unprocessed data 

differed slightly from other years, but pre-processing addressed such shifts in the spectra (Fig. 

27.2). Further, PC scores visualized by scan date suggest that there were no issues with the 

spectrometer or user errors associated with a particular time period (only showing pre-processed 

plots for demonstration; Fig. 27.3). While pre-processing spectra is typically done prior to 

modeling and data analysis (Rinnan et al. 2009), PCAs with unprocessed and pre-processed data 

maximize the ability to identify scan data quality issues. For example, stray light correction 

miscalculations can be more easily identified using unprocessed spectra (M. Arrington, pers. 

comm.). 

Quantitative designations of spectral outliers were performed only using pre-processed 

data, under the assumption that these data exclude any correctable instrument-based issues 

(Rinnan et al. 2009). Outlier designation from PCA used Hotelling’s T2 and Q residuals to 

provide a definitive cut-off for inclusion in analyses (Fig. 27.4). While the 5% threshold for 

extreme values and 1% threshold for outliers present a decision step for the analyst, this 

approach provides a repeatable tool and threshold to apply across all datasets. Of 1,500 total 

specimens scanned from the 2021 dataset, 30 were identified as outliers from PCA and a greater 

number were identified as extremes (Fig. 27.4). Many of these spectra differed visually from 

others (Fig. 27.4b), but plots of PC scores indicate that thresholds based on PC1 and PC2 scores 
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would not be sufficient to identify outliers to the same degree as Hotelling’s T2 and Q residuals 

(Fig. 27.5). 

 

QA/QC Using PLS – 2021 Collection Year 

 
 Fish lengths from “new” scan data were predicted from PLS models that excluded each 

respective focal year. Outlier identification using Y-distance and full X-distance, that combined 

Hotelling’s T2 and Q residuals into a single metric (Rodionova and Pomerantsev 2020), 

identified 52 outliers. Many outlier spectra diverged from the 1:1 observed and predicted line, 

following expectations for outliers detected by Y-distance (Fig. 27.6). For the 2021 case study, 

these outliers were often larger fish compared to most previous observations, indicating that 

these larger fish might be important for expanding the data domain for future outlier detection, 

and potentially for age prediction (Fig. 27.6). However, other outliers did not diverge from the 

1:1 line, suggesting that X-distance metrics are also necessary to identify extreme and outlier 

spectra. While these extreme and outlier values may not impact length prediction, the impacts on 

final age models require additional exploration. Outliers detected from PLS exceeded those from 

PCA alone, but also excluded some outliers that were identified by PCA based on comparisons 

of individual specimen identifiers (see Appendix A Table A5 for example). This highlights the 

benefit of a combined PCA and PLS approach to QA/QC as both provide different information 

about outliers based on spectra (PCA) and through variation in relationships with a meaningful 

biological characteristic (PLS). 
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Final QA/QC Step with Combined PCA and PLS – 2021 Collection year 

 
 Outliers identified from PCA and PLS were used to generate a series of diagnostic plots 

and generate a list of outlier spectra for further inspection by a data manager. Plots of pre-

processed spectra showing “new” scan data served as a visual check for a data analyst and 

indicated that many of the spectra identified as outliers using the two methods in conjunction had 

some visually discernible spectral irregularities (i.e., shifted peak, additional peaks, or unusual 

spectral shape). The outliers detected by PLS also encompassed spectra with both larger and 

smaller first derivative pre-processed peak heights (differences in slope in raw data) compared to 

most spectra (Fig. 27.7). 

 Other standardized QA/QC output includes file names for outlier spectra as well as 

details about potential issues with the otolith (broken, crystallized, or other problems) to aid in 

determination of next steps for a particular specimen (see Appendix A Table A5 for example). 

For the 2021 case study, 24 of the 61 total outliers were identified as being broken, crystallized, 

or other. This number far exceeds the proportion of the 1,500 total scans with these issues or that 

were unscannable. This report tool would then signal the QA/QC analyst that these otoliths 

should be aged using traditional methods. In addition to outliers, a large proportion of spectra 

were identified as “extreme” from both PCA and PLS approaches. These data points will require 

additional exploration to determine their impact on age prediction models. However, one 

potential approach is to consider “extreme” spectra as values that may increase the spectral data 

domain across additional ages or lengths, thus representing data points to include in calibration 

model updates (see Helser et al. this volume-a). The next course of action for the remaining 

outliers may depend on the workflow and focal species. A suggested workflow outlined in 

Figure 27.1 is: (1) Check the metadata for each sample to determine if comments were included 
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in data collection that may explain the unusual spectra. For example, a fish may be collected 

from an unusual geographic region, the fish may be smaller or larger in size than historic 

collections, or there may be a data entry error. (2) Rescan the otolith if there is no indication of 

other potential issues. (3) Use traditional ageing methods to obtain an age. 

 

Considerations 

 

The QA/QC process will be ongoing with new data collection, and documentation is 

essential for record keeping purposes and reproducibility. One option to ensure good record 

keeping and documentation is to utilize markdown documentation and code in R statistical 

software or Python to produce standardized reports and to maintain records of datasets used for 

analysis. In practice, analysts may not be well versed in a particular programming language. 

Therefore, interactive output such as html documents, user-friendly interfaces, or specialized 

functions or packages may facilitate the use of QA/QC procedures and documentation (examples 

shown in Appendix A are exported as pdf documents derived from html with interactive plots). 

PCA and PLS models built with large datasets may also be constrained by computing power. Our 

recommendation is to build these models and store them (e.g., R object or workspace) to load for 

QA/QC of “new” data. An additional consideration is to update these baseline models annually 

with “new” scan data. 

As FT-NIR spectroscopy approaches for fish age prediction continue to develop and 

implementation proceeds across agencies, these QA/QC practices will likely be refined. 

Ultimately, these tools can develop into standardized best practices across agencies with a 

potential goal to implement programmatic packages for universal use. In light of this goal, we 
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document a first step toward standardization at the AFSC and highlight considerations for 

implementation. 
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Figure 27.1. -- Schematic of the quality assurance/quality control (QA/QC) process conducted by a data manager and final actions to 
address outlier spectra in order of operation. The schematic uses 2021 walleye pollock Gadus chalcogrammus otolith 
data as an example. For a description of Issues 1-4, see the Introduction.  
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Figure 27.2. -- Principal component analysis (PCA) of a) unprocessed and b) pre-processed spectra by length quartile for the 2021 
case study where data from 2021 were projected using the PCA built with all other data.
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Figure 27.3. -- a) Principal component axis-1 (PC1) and b) PC2 of pre-processed spectra by scan 
date for the 2021 case study where data from 2021 were projected using the PCA 
built with all other data.
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Figure 27.4. -- Principal component analysis (PCA) extreme values and outliers for the 2021 case study using pre-processed data 
showing thresholds based on a) Hotelling T2 (T-squared) and Q residuals and b) plots of new spectra based on regular, 
extreme, and outlier categories. Extreme = 5% significance threshold, outliers = 1% threshold, and regular did not 
exceed either threshold. Black dots in (a) are observations from the previous scan data used to build the PCA.
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Figure 27.5. -- Outlier spectra (red points) principal component analysis (PCA) scores in the 
context of all other scan data for the 2021 case study where data from 2021 were 
projected using the PCA built with all other data.
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Figure 27.6. -- Extreme and outlier spectra identified by partial least squares regression (PLS) models showing a) outlier thresholds 
and b) length predictions. “New” data from 2021 were predicted using a PLS model built with all other years. In (a) 
“new” spectral data are shown in the color scale and previous data are black points.



446 
 

 

 

Figure 27.7. -- Pre-processed spectra from “new” scan data (2021) showing outliers identified by 
principal component analysis (PCA) and partial least squares regression (PLS) 
models.  
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DISCUSSION TOPICS AND RECOMMENDATIONS 

 

 The Fourier Transform Near Infrared (FT-NIR) Spectroscopy Workshop held in Seattle 

April 3-7, 2023 at the Alaska Fisheries Science Center (AFSC) included research presentations 

organized into three main sections: Application and Development, Spectroscopy Implementation, 

and Stock Assessment Integration, with open discussions during the last two days of the 

workshop pertaining to these and other relevant FT-NIR spectroscopy topics. During the 

presentation Q&A sessions, as well as the open discussion sessions, several salient themes were 

identified, some of which were also recurring topics of discussion during the first in-person FT-

NIR Spectroscopy Fish Age Determination Workshop held in Seattle in 2019 (Helser et al. 

2019a). The major themes outlined in the 2019 workshop were: 1) Instrument Settings and 

Optimization, 2) Sample Presentation – Preparation and Storage, 3) Calibration Models – 

Statistical Approach to Quantitative Analysis, 4) Communication to Assessment Reviewers, the 

Fishing Industry, and Policy Makers, and 5) Questions or Concerns about Technology. In the 

2023 workshop, these themes of discussion remained largely the same, but with a greater 

emphasis on establishing best practices in scanning methodology, model development, and 

prediction evaluation, identifying barriers and building pathways towards implementation and 

stock assessment integration, and communicating with stakeholders. Below we describe the key 

points raised during the 2023 workshop discussions, with recommendations for further 

development. 
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ISSUE #1: SCANNING METHODOLOGY AND SAMPLE PRESENTATION 

 

 Since the 2019 workshop, most of the laboratories on the FT-NIR Spectroscopy Strategic 

Initiative Development Team (SIDT) have experimented with various sample presentation 

methods, tissue standardization methods, and scanning accessories to reduce excess light 

scattering and optimize spectral absorbance profiles of otoliths and other tissues. This has been 

particularly important for small otoliths, which generally have low signal-to-noise ratios when 

scanned directly on the instrument window alone. Using various transflectance stamps in 

conjunction with steel rings and Teflon discs to reduce the aperture size and focus the light on 

the sample has yielded promising results (Passerotti et al. 2020a, TenBrink et al. this volume, 

Matta et al. this volume-b). The choice of accessories is likely to be dependent on the application 

and may be species- or life stage-specific, requiring thorough investigation. 

 The discussion shifted focus towards exploring methods to optimize scanning procedures 

and improve the efficiency of the scanning process. Variations in scanning practices among 

different SIDT laboratories were noted. Thomas Helser noted the extensive effort by the AFSC 

laboratory to refine sample presentation methods and establish best practices for scanning, 

including wearing gloves when handling otoliths, using plastic forceps, and standardizing the 

orientation and position of specimens on the sample window. While there are certain center-

specific steps that may affect efficiency (e.g., weighing, imaging, wiping away preservation 

media), there are commonalities that can be shared among centers through a best-practices 

scanning manual that Brenna Hsieh (AFSC) is developing, allowing standardization of 
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procedures. Development of standard operating procedures could also be expanded to other 

tissues (e.g., gonads, liver, muscle) and applications (e.g., hormone analysis, disease detection), 

where appropriate. 

 

ISSUE #2: CALIBRATION MODEL DEVELOPMENT 

 

 Discussions pertaining to calibration model development revolved around two main 

topics: ensuring representative sampling of traditional microscopic ages (TMA) and employing 

the most appropriate model type to achieve unbiased predictions. Because FT-NIR spectroscopy 

is a secondary method in which age predictions from otolith spectra are “calibrated” against 

TMA reference age estimates, choice of those reference data is an important issue. It was 

stressed during the workshop that calibration models used to predict future data need to be 

representative of any new observations. Research may be needed to evaluate otolith spectral 

variability, both temporally and or spatially, before a base model is accepted for future 

predictions. The sample size must be large enough and the age distribution must be adequately 

covered in each calibration data set. The simulation work of Arrington et al. (this volume-a) 

suggests diminishing returns for calibration data sets when sample sizes exceed 900 for eastern 

Bering Sea walleye pollock (Gadus chalcogrammus) collections between 2014 and 2021. They 

recommend evaluating optimal sample sizes based on a species-specific basis due to varying 

levels of ageing error among species. To date, the AFSC has not employed a pre-specified 

method or sampling distribution for selecting samples for model calibration. This is because 

different sample selection approaches will depend on a number of factors such as data quantity 

(TMA ages and associated otolith spectra), data variability, and the model employed. It can also 
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be said that the model employed for training or calibration will be dependent upon data quantity. 

In cases of data limitations or exploratory calibration model development, a boxcar distribution 

may be a reasonable approach, as it represents ages and associated otolith spectra equally over 

the age range. Arrington et al. (this volume-a) suggest algorithms that maximize variability in 

otolith spectra in principal components space, particularly in cases where spectral variability 

increases with age, are preferable for calibration model sample selection. Their results indicate 

that the Kennard-Stone algorithm performs the best. However, in instances where this algorithm 

is not suitable, random selection is a viable alternative for sample selection. Morgan Arrington 

(University of Washington) noted during the discussions that she is happy to share her code with 

the rest of the SIDT. 

 Standard chemometric approaches using partial least squares (PLS) regressions are the 

models most typically used by all the laboratories to predict age and other metrics. These models 

are easy to implement directly in the Bruker OPUS software, increasing their appeal. However, 

several SIDT members are exploring modeling alternatives that may generate more accurate 

predictions. High-performance computing alternatives, such as cloud computing, graphics 

processing units, and virtual machines, were identified as potential needs when employing more 

sophisticated deep learning tools and larger quantities of data. Wallace (this volume) at NWFSC 

and Benson et al. (2023, this volume) at AFSC have employed deep learning methods as 

alternatives to PLS regressions for developing calibration models. Wallace (this volume) has 

found the keras R package (https://keras.io) that sits on top of Google’s TensorFlow software 

(https://www.tensorflow.org) to be useful for neural network modeling for age predictions of 

sablefish (Anoplopoma fimbria) and Pacific hake (Mercluccius productus). When asked about 

the number of otoliths required to construct a deep learning model, Irina Benson (AFSC) 

https://keras.io/
https://www.tensorflow.org/
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referenced a subject matter expert who recommended a minimum of 1,000 samples, although it 

is generally recognized that having more data is beneficial for improved model training. The 

ongoing deep machine learning research being conducted by the University of Washington’s 

Information Processing Laboratory, under the guidance of Professor Jenq-Neng Hwang, 

integrates FT-NIR spectra, images, and metadata. This work suggests potential advantages of 

using separate models for older and younger fish (Zheng et al. this volume). The rapid expansion 

of deep learning and cloud computing in spectral data analysis across multiple industries 

highlights the SIDT’s future focus on leveraging these tools as a central point of the strategic 

initiative. The SIDT suggested that any new proprietary or open source software for 

chemometric analysis should be vetted for compatibility and reliability and incorporated into a 

“tool box” for FT-NIR spectroscopy fish age modeling in NOAA Fisheries. Also notable is that 

the SI could greatly benefit from personnel with expertise in data science and deep machine 

learning to enhance and improve the development of tools. 

 

ISSUE #3: AGE PREDICTION AND MODEL EVALUATION 

 

 Considerable time was dedicated to discussing the assessment of FT-NIR spectroscopy’s 

reliability in predicting fish age, as well as determining the optimal timing for model updates. To 

reach this objective, maintaining some level of traditional age determination to verify model 

predictions will be essential, although the exact amount is still uncertain. Since FT-NIR 

spectroscopy is a secondary method reliant on TMA for model training and updating, TMA will 

continue to be necessary. This includes species that have transitioned into the FT-NIR process 

and those that are still completely dependent on TMA for stock assessments. Papers on TMA 
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ageing error have demonstrated that characteristics such as the coefficient of variation (CV), the 

number of samples, and age class distribution can have significant effects on bias detection 

(McBride 2015, Nesslage et al. 2022). Arrington et al.’s (this volume-b) simulation work using 

Pacific cod (Gadus macrocephalus) as a case study demonstrated that bias may have more of an 

impact on model prediction than precision, though these impacts also depend on the level of 

spectral variation. Extending Arrington et al.’s work to other species with different error 

structures would be very informative towards understanding the interaction between ageing error 

and spectral variation. Here again, the SIDT noted that it would be helpful to bring in a data 

scientist who understands predictive analytics to evaluate different model-updating scenarios. A 

team member highlighted the longstanding acceptance of TMA among stakeholders, recognizing 

the challenges of communicating the complicated methods and earning acceptance of the new 

approach. The SIDT might benefit from further discussion on collaborating with a dedicated 

communications expert to effectively convey scientific concepts to the public. 

 The next topic of discussion focused on how to best compare FT-NIR spectroscopy 

decimal age predictions with TMA ages, which are typically in integer form. The predictions are 

continuous random data, but TMA data are multinomial. There are several different options for 

how to deal with this problem: the decimal ages can be rounded (in different ways) to integer 

ages, or the reference TMA ages can be converted to decimal ages if marginal increment 

information is available (Barnett et al. this volume). It was noted that the AFSC tested these 

methods on walleye pollock, but it did not have much effect on the overall outcome, most likely 

because predictions were within 0.6 years of TMA ages. Treating the response, TMA age, as a 

categorical outcome would produce an integer age. Linear methods and deep learning methods 

can be both used to produce integer ages with probabilities, though this may be problematic for 
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long-lived stocks that have many age classes Such a method using otolith images and NIR 

spectra using convolutional neural networks was presented at the workshop (Zheng et al. this 

volume). 

 An SIDT member involved in stock assessment raised concerns regarding the alignment 

between TMA and FT-NIR spectroscopy ages. Our current analysis suggests a potential 

tendency of underfitting at older age groups. For some species, we have also observed overfitting 

at the youngest ages, although both underfitting and overfitting across various age classes are 

possible. This pattern may be attributable to inherent observation uncertainty stemming from 

TMA errors or natural variation in otolith spectra. Tom Helser (AFSC) noted that models derived 

from otolith spectra collected among different analysts are more precise than TMA double-reads 

and that variability in agreement between TMA readers can reduce agreement between TMA and 

FT-NIR spectroscopy. Additionally, spectra collected from species with a broad range of otolith 

sizes might challenge the proportionality assumption of the Beer-Lambert law concerning 

analyte concentration and absorbance, potentially causing non-linearity. To address these 

challenges, exploring different modeling approaches such as leveraging deep learning models, 

which are capable of handling non-linearity using specialized activation functions, may offer 

promising solutions. Benson et al. (this volume) demonstrated the potential of such 

methodologies. Furthermore, it is important to consider the extent of disagreement between 

TMA and FT-NIR spectroscopy ages. Predictions within 1 year may have little impact on stock 

assessment outcomes, especially in cases where ageing imprecision is high (CV > 5%) or the 

deviation is near or beyond the plus group. Our focus remains on striving for the most accurate 

predictive model using the best goodness-of-fit tools available. However, it is essential to 

evaluate impacts on stock assessments, as outlined in the next section. 
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 Additionally, a mixed method approach could be established whereby FT-NIR 

spectroscopy is used to predict age for the majority of specimens, while ages of the remaining 

group of fish, often comprising the oldest and least numerous in the sample, are estimated by 

TMA. Such an approach could still result in reasonably good efficiency of age estimate 

production for the vast majority of otoliths. It is not uncommon to see mixed methods employed 

within the TMA determination process itself. Typically, ages are derived from otolith surfaces of 

the youngest fish or those with the clearest growth patterns, while otoliths from older fish are 

sectioned and sometimes burned or stained. Issues related to stock assessment models are worthy 

of further consideration. If mixed methods are employed to generate ages for age compositions, 

it may be necessary to construct separate ageing error vectors to account for the uncertainty 

arising from the different methods. A simulation using the R package ss3sim (https://cran.r-

project.org/web/packages/ss3sim/) would be a good framework to investigate these effects. 

 

ISSUE #4: STOCK ASSESSMENT INTEGRATION 

 

 Overall, FT-NIR spectroscopy age prediction shows promise, as was demonstrated by a 

number of case studies in these proceedings. Yet, a better understanding of the sensitivity of 

population dynamics models to changes in the input data type to evaluate stock assessment 

outcomes is needed. It will be necessary to evaluate model sensitivity on a case-by-case basis 

because assessments can vary greatly in model structure, parameter specification, data quantity, 

and data use. Nevertheless, some general criteria for acceptance of substituting FT-NIR 

spectroscopy age data could be defined and universally applied. For instance, Ianelli (this 

volume) used changes in log likelihoods to evaluate goodness-of-fit from substitution of age 

https://cran.r-project.org/web/packages/ss3sim/
https://cran.r-project.org/web/packages/ss3sim/
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compositions based on the different ageing methods. However, depending on the gradient of the 

likelihood space, small differences in likelihoods may not be that informative. Garner et al. (this 

volume) employed the R package ss3sim to simulate age data using an operating model and an 

estimation model under ageing error assumptions based on the two ageing methods. Their choice 

for using that approach was based on limited data for which there were both TMA and FT-NIR 

spectroscopy ages for direct substitution of age compositions. Finally, Helser et al. (this volume-

b) used MCMC simulation in Stock Synthesis (V3.30.16.02) to evaluate the probability in the 

difference of the marginal posterior density of model parameters and management quantities 

when substituting a 6-year time series of age compositions from the two ageing methods. While 

there may not be a universal solution, criteria and benchmarks to evaluate assessment model 

outputs could be defined and used to provide the evidence needed to accept FT-NIR 

spectroscopy age data as a credible substitute for TMA. 

 Another question is how to best blend different data types (i.e., TMA and FT-NIR 

spectroscopy age data) in a stock assessment. Historical age estimates are largely generated 

through TMA, so combining them with FT-NIR spectroscopy age predictions for more recent 

years may require a transition matrix necessary to estimate the probabilistic difference between 

them. Alternatively, most modern statistical age-structured assessment models can incorporate an 

evolution of data type properties, such as age composition and ageing error, within a time series 

through blocking structure mitigating a need to make modifications to the past data. In such a 

case, a clean transition to age composition data generated from FT-NIR spectroscopy ageing can 

be made if such data result in no discernable assessment model outcomes as discussed above. 

 Different rounding scenarios for the continuous FT-NIR spectroscopy age predictions 

could also be explored in more detail. Several workshop participants presented simulations 
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integrating both data types and different ageing error scenarios into assessments. These case 

studies demonstrated varying effects on recruitment, spawning stock biomass, and natural 

mortality, all of which impact biological reference points (Garner et al. this volume, Ianelli this 

volume, Helser et al. this volume-b). Notably, these simulations all focused on relatively short-

lived stocks (walleye pollock, Pacific cod, and gray snapper). Considering species with diverse 

life histories could prove beneficial, as longevity is expected to impact these estimates. 

 A full evaluation of stock assessment model sensitivity may be challenging, particularly 

in cases when intact otoliths are not available for FT-NIR scanning. For example, typically, only 

one of each otolith pair is collected in fishery samples of gray snapper. Given the frequently 

destructive nature of TMA methods, a second otolith is not usually available for scanning 

historical samples. Because the SEFSC laboratory has not evaluated whether there are 

differences between left and right otolith spectral data, predictive models were based on only left 

otoliths, further reducing sample size. It was noted that the AFSC laboratory has not detected 

significant differences between scans of right and left otoliths for a number of species including 

flatfish, which have asymmetrical otoliths, suggesting that the otolith side may be 

inconsequential. To address situations where sample sizes are relatively small, an SIDT member 

suggested performing an analysis outside the stock assessment whereby bootstrapped age 

compositions are calculated from each dataset and the uncertainty is summarized as a weighting 

factor. 

 In general, the initial work evaluating sensitivity of stock assessment outcomes from 

different ageing methods shows promise, but there is still more work to do to improve 

predictions, particularly given the concerns about lack of fit. Deep learning models have largely 

been able to rectify non-linearity in TMA reference data and FT-NIR spectroscopy age 
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predictions. However, how many ages and how many years of age composition data are needed 

for a sensitivity analysis in stock assessment models remain pertinent questions. Again, these 

issues may need to be evaluated on a case-by-case basis because models vary considerably in the 

quantity of age data used, age-related model specifications (e.g., time-varying growth), and the 

competing influence of other data types. Clearly, SIDT members need to work closely with stock 

assessment scientists to define the most critical assessment model outcomes, the criteria used to 

test the different ageing methods, and analytical platforms for the sensitivity analysis. 

 

ISSUE #5: PATHWAYS AND BARRIERS TOWARDS IMPLEMENTATION 

 

 The development of Standard Operating Procedures (SOPs) for all the steps associated 

with generating FT-NIR spectroscopy age predictions is critical for creation of a data pipeline 

and providing a framework for data quality assurance and quality control (QA/QC). These SOPs 

would include standardized QA/QC procedures to 1) maintain consistency during the scanning 

process itself, 2) evaluate spectral data, 3) determine the percentage of otoliths that need to be 

aged using TMA methods, 4) evaluate model predictions, and 5) determine when model updating 

is necessary. Staff at the AFSC are actively working towards creating protocols to standardize 

both the scanning process (Hsieh et al. in prep.) and data/model evaluation procedures (Goldstein 

et al. this volume-a). These SOPs will be disseminated to other laboratories participating in the 

SI as either NOAA publications (e.g., NOAA Tech Memos or Processed Reports) or in peer-

reviewed journals. 

 Having an establish database infrastructure will also facilitate more rapid adoption and 

implementation of FT-NIR spectroscopy to age fish. Jon Short (AFSC) has built a relational 
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database (AGE3) using SQL Server and a Python front end for all of AFSC’s age and related 

data (Short this volume). Not every other laboratory in the SI has a database like AGE3, but there 

was great interest in patterning new database structures based on AGE3. It was noted that 

replicating AGE3 exactly is not feasible due to its reliance on various data sources, making a 

direct “plug and play” into the workflows of other laboratories unlikely. However, Jon is willing 

to share AGE3’s general database table structure and suggested that other laboratories start with 

Microsoft ACCESS to build new tables copying AGE3’s structure. Code sharing and furthering 

open communication among database managers from different laboratories would greatly 

facilitate the process. Discussion also centered on funding for expertise in developing an 

enterprise-level database within NOAA Fisheries that can harmonize the different data types, 

standardize data storage and archiving, and develop data discovery and analytic tools for quality 

control and modeling applications for age prediction. 

 Achieving buy-in from stock assessment scientists, the fisheries management councils, 

and stakeholders could pose a potential challenge in the adoption and transition of the FT-NIR 

spectroscopy ageing method. Active collaboration between SIDT members and assessment 

scientists is imperative to test effects of integrating FT-NIR spectroscopy age data into 

population models and on biological reference points. The SIDT will continue to work directly 

with assessment scientists to determine criteria and benchmarks that must be met before the new 

method is adopted. Additional workshops and meetings with the council bodies, such as the 

Scientific and Statistical Committee, are envisioned as is critical review of the methodology by 

the Center for Independent Experts. 

 Resource and staffing limitations were a major concern brought up by member of the 

SIDT during the discussion. Many SIDT laboratories have limited personnel and resources to 
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dedicate to FT-NIR spectroscopy SI research and development while maintaining their core 

responsibility of meeting annual production ageing demands. Potential avenues of 

communication to alleviate these concerns are discussed in detail in the next section. 

 

ISSUE #6: COMMUNICATION WITH DATA END USERS, STAKEHOLDERS,  

AND NOAA LEADERSHIP 

 

 Modern stock assessments of commercial stocks often rely heavily on fish age data. 

While the FT-NIR spectroscopy method shows great promise for producing age data more 

efficiently, gaining full support from data end users and stakeholders will require continued 

serious investments in research and development of FT-NIR spectroscopy age estimation 

methods. Improving communication among the SIDT, the NOAA Science Board, stock 

assessment community, and stakeholders will be key. At a few laboratories, efforts are already 

underway where SIDT members are working side by side with assessment teams to 

communicate and evaluate assessment models with regard to the new technology. However, 

more outreach is needed to communicate differences between ageing methods, develop a 

transition plan which defines the data pipeline with quality control processes and data controls, 

and finalize data products that will enable users to better understand, and therefore accept, FT-

NIR spectroscopy age data. Direct conversations with the Science Board are also necessary to 

understand their expectations regarding the accomplishments at the conclusion of the SI, 

expected at the end of FY2025. Several SIDT laboratories, particularly the smaller laboratories 

that have fewer dedicated personnel, are resource-limited and unable to fully perform the 

research and development needed to implement the technology. These laboratories voiced the 
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concern that the timeline to operational readiness may not be feasible. Additional support from 

individual science centers would be helpful to offset the disruption caused by this technological 

innovation. Sharing resources among the laboratories and bringing in outside experts to assist 

with development and integration were discussed as possible solutions towards improving 

efficiency and reducing redundancy. Dedicated funds for staff training could also assist in FT-

NIR spectroscopy integration but would require cutbacks related to other outputs and tasks. Open 

science tools (e.g., Google groups, GitHub, NOAA Virtual Lab, Confluence pages) were 

mentioned as ways to improve communication within the SIDT. The monthly SIDT meetings 

have provided valuable opportunities for SIDT members to discuss progress, setbacks, and 

troubleshooting. Since the April 2023 workshop, the SIDT meetings have refocused on topical 

themes each month, resulting in rich, in-depth discussions that have helped advance and share 

the SIDT’s collective knowledge. The SIDT has concluded that sharing documentation of best 

practices as they develop among members would be helpful in proceeding towards 

implementation. We have used NOAA Virtual Lab as a platform for knowledge transfer among 

SIDT members and will continue to do so until a potentially better platform is found. 

 In short, great progress has been made since the Strategic Initiative began, and the 

SIDT’s continued efforts have forged a path towards implementing and integrating FT-NIR 

spectroscopy data collections into fisheries stock assessments and communicating research 

products. 
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 Quality assurance and quality control (QA/QC) procedures utilize both principal 

component analysis (PCA) and partial least-squares regression (PLS) to visually identify unusual 

patterns in spectra and quantitatively determine outliers from PCA and PLS. This approach relies 

on a comparison of new scan data with previous scans to ensure that data remain comparable 

across surveys and years. 
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1. Scan session information 

 

Table A1. -- New scan data information. 

Year Total scans all sessions 

2019 1,478 

 

 

 

Table A2. -- New scan data summary information by scan session. 

Scan session Year Scans per session 

NIR_162201901201A 2019 138 

NIR_162201901201B 2019 261 

NIR_162201901201C 2019 140 

NIR_162201901201D 2019 140 

NIR_162201901201E 2019 85 

NIR_94201901201A 2019 124 

NIR_94201901201B 2019 236 

NIR_94201901201C 2019 138 

NIR_94201901201D 2019 138 

NIR_94201901201E 2019 78 
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Table A3. -- New scan data summary of potential otolith issues. 

  broken crystallized other problem unscannable 

 0 0 0 0 

 0 0 0 7 

 0 0 49 0 

 0 0 29 29 

 0 31 0 0 

 0 14 0 14 

 0 4 4 0 

 0 3 3 3 

 11 0 0 0 

 13 0 0 13 

 2 0 2 0 

 1 0 1 1 

 1 1 0 1 

 28 53 88 68 

Total 56 106 176 136 

  



504 
 

2. PCA 

 

 

2.1 Unprocessed spectra visual inspection 

 

 

 

Figure A1. -- PCA of unprocessed spectra with new spectra (2019) projected using PCA from the 
other collection years. Data are divided into fish fork length quartiles (Q1-Q4) to 
better discern patterns in data “clouds”. 
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Figure A2. -- PC1 (a) and PC2 (b) of unprocessed spectra by scan date to visually assess drift 
over time related to instrumentation or scan procedures. New spectra (2019) were 
projected using PCA from the other collection years. 
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2.2 Pre-processed spectra visual inspection 

 

 
 

Figure A3. -- PCA of pre-processed spectra with new spectra (2019) projected using PCA from 
other scan years. Data are divided into fish fork length quartiles (Q1-Q4) to better 
discern patterns in data “clouds”. 

  



507 
 

 

 

Figure A4. -- PC1 (a) and PC2 (b) of pre-processed spectra by scan date to visually assess drift 
over time related to instrumentation or scan procedures. New spectra (2019) were 
projected using PCA from the other collection years. 
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2.3 PCA outliers  

 

 

 

Figure A5. -- PCA outliers using pre-processed data. PCA from other collection years data was 
used to set the thresholds for new data (2019) using the approach outlined in 
Pomerantsev and Rodionova (2014) using statistical moments. Extreme = 5% 
significance threshold and outliers= 1%. 
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Figure A6. -- Pre-processed new data (2019) showing normal (gray), extreme (orange), and 
outlier (red) spectra from PCA-based outlier designations shown in Fig. A5. 
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Figure A7. -- Outliers (red) identified from PCA of pre-processed spectra plotted in PCA biplot 
space. Data are divided into fish length quartiles (Q1-Q4) to better discern patterns 
in data “clouds”. 
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3. PLS 

 

 

 

 

Figure A8. -- Outlier, extreme, and all other (regular) data identified from PLS. Pre-processed 
spectra were used to build a PLS model from 2014, 2015, and 2021 collection 
years (black dots) and fish lengths were predicted from spectra from the 2019 
dataset to determine outlier and extreme data points. Normalized full X-distance is 
a combination of Hotelling T-squared and Q-residuals, and normalized Y-distance 
is a comparison of observed and predicted values (Rodionova and Pomerantsev 
2020). Critical limit extreme = 0.05 and critical limit outlier = 0.01. 
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Figure A9. -- Observed and predicted fish lengths from the PLS. Red points show outliers from 
new data (2019) based on Y-distance and full X-distance. 
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4. PCA and PLS outliers combined 

 

 

Figure A10. -- Pre-processed spectra from 2019 showing PCA-based outliers in red and PLS-
based outliers in dark red. Spectra that were not identified as outliers are in gray. 

 

 

Table A4. -- Summary of outlier spectra from PCA and PLS using pre-processed data. 

Total outliers PCA outliers PLS outliers 

42 27 42 
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Table A5. -- List of file names for spectra identified as outliers from PCA and PLS, and 
information about potential issues with otoliths that may have impacted scan 
quality. 

File name PCA PLS broken crystallized other 
problem 

WALLEYE_POLLOCK_94201901201_186_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_212_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_218_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_248_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_280_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_435_OA1.0 outlier outlier   X 

WALLEYE_POLLOCK_94201901201_442_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_566_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_94201901201_589_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_605_OA1.0 outlier outlier   X 

WALLEYE_POLLOCK_94201901201_609_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_94201901201_620_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_94201901201_632_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_94201901201_728_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_776_OA1.0 outlier outlier    

WALLEYE_POLLOCK_162201901201_8_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_162201901201_55_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_162201901201_135_OA1.0 outlier outlier   X 

WALLEYE_POLLOCK_162201901201_136_OA1.0 outlier outlier  X X 

WALLEYE_POLLOCK_162201901201_196_OA1.0 outlier outlier    

WALLEYE_POLLOCK_162201901201_324_OA1.0 outlier outlier   X 

WALLEYE_POLLOCK_162201901201_334_OA1.0 outlier outlier    

WALLEYE_POLLOCK_162201901201_339_OA1.0 outlier outlier   X 

WALLEYE_POLLOCK_162201901201_464_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_162201901201_504_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_162201901201_596_OA1.0 outlier outlier  X  

WALLEYE_POLLOCK_162201901201_764_OA1.0 outlier outlier    

WALLEYE_POLLOCK_94201901201_246_OA1.0  outlier    
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File name PCA PLS broken crystallized other 
problem 

WALLEYE_POLLOCK_94201901201_338_OA1.0  outlier    

WALLEYE_POLLOCK_94201901201_347_OA1.0  outlier    

WALLEYE_POLLOCK_94201901201_409_OA1.0  outlier    

WALLEYE_POLLOCK_94201901201_410_OA1.0  outlier    

WALLEYE_POLLOCK_94201901201_421_OA1.0  outlier  X  

WALLEYE_POLLOCK_94201901201_497_OA1.0  outlier  X  

WALLEYE_POLLOCK_94201901201_705_OA1.0  outlier    

WALLEYE_POLLOCK_94201901201_755_OA1.0  outlier    

WALLEYE_POLLOCK_162201901201_163_OA1.0  outlier   X 

WALLEYE_POLLOCK_162201901201_459_OA1.0  outlier  X  

WALLEYE_POLLOCK_162201901201_485_OA1.0  outlier X  X 

WALLEYE_POLLOCK_162201901201_561_OA1.0  outlier  X  

WALLEYE_POLLOCK_162201901201_640_OA1.0  outlier  X  

WALLEYE_POLLOCK_162201901201_737_OA1.0  outlier  X  
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APPENDIX B. Workshop Agenda 

WORKSHOP: Rapid Estimation 
of Fish Age Using Fourier-
transform Near Infrared 
Spectroscopy (FT-NIRS) 

 

Virtual attendance via Webex will also be available 
 

April 3-7, 2023  NOAA Western Regional Campus, Alaska Fisheries Science Center 
          7600 Sand Point Way, NE, Building 9 Auditorium, Seattle, WA 98115 
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Tuesday, 4 April  

Presentations FT-NIRS APPLICATION DEVELOPMENT 

9:00 AM – 9:30 AM FT-NIRS age prediction of eastern Bering Sea yellowfin sole: a case study of a 
moderately long-lived flatfish (Todd TenBrink, AFSC – Seattle Lab) 

9:30 AM – 10:00 AM A preliminary analysis and review of FT-NIR spectroscopy and DNA CpG site 
methylation for fish age prediction (Laurel Lam, NWFSC – Seattle Lab) 

10:00 AM – 10:30 AM Applying FT-NIRS predictive ageing to different genetic stocks of white grunt within the 
U.S. south Atlantic (Jamie Clark, SEFSC – Beaufort Lab)  

Break  

11:00 AM – 11:30 AM A novel approach for determining the spawning phenology of walleye pollock using 
Raman spectroscopy (Sandi Neidetcher, AFSC – Seattle Lab) 

11:30 AM – 12:00 PM FT-NIRS ageing of finfish and shark species in the northwest Atlantic (Alex Rubin, 
NEFSC – Narragansett Lab) 

12:00 PM – 12:30 PM Exploration of FT-NIRS for shortbelly rockfish (Sebastes jordani): an ecologically 
important forage fish off the coast of California (Jessica Choi, SWFSC – Santa Cruz Lab) 

Lunch  

2:00 PM – 2:30 PM Investigating the use of FT-NIR spectroscopy to age gag (Mycteroperca microlepis), a 
protogynous hermaphroditic species (Beverly Barnett, SEFSC – Panama City Lab) 

2:30 PM – 3:00 PM Exploring the use of FT-NIRS for ageing sablefish (Anoplomona fimbria) and Pacific 
hake (Merluccius Productus) of the U.S. west coast (John Wallace, NWFSC – Seattle) 

Monday, 3 April  

1:00 PM – 1:30 PM WELCOME AND INTRODUCTIONS 

1:30 PM – 2:30 PM 

 

NOAA Fisheries FT-NIRS Fish Ageing Strategic Initiative: Past, present & future  
(Thomas Helser, AFSC — Seattle Lab) 

2:30 PM – 4:30 PM 

 

Session 1: AFSC Spectroscopy Lab Tour & demonstration  
(Bruker Applications Scientist - Jason Erikson). AFSC, Building 4 Room 1111 

5:00 PM Informal social: Burke Gilman Brewing Company, 3626 NE 45th Street, Suite 102 
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3:00 PM – 3:30 PM Developing spectroscopy approaches to measure life history characteristics of fish 
throughout ontogeny (Esther Goldstein, AFSC – Seattle, Lab) 

Break  

4:00 PM – 4:30 PM Rapid daily age estimation of juvenile walleye Pollock in the Gulf of Alaska using FT-NIR 
spectroscopy (Beth Matta, AFSC – Seattle Lab) 

4:30 PM – 5:00 PM Fish otolith proteomics and its relationship and impact on the use of FT-NIR 
spectroscopy for fish age prediction (Oliver Thomas, University of Melbourne) 

Close  

  

Wednesday, 5 April  

 

Presentations cont. 

 

9:00 AM – 9:30 AM Developing NIR sampling methodology for modeling species discrimination in live 
catfish for aquaculture (Carrie Vance – Mississippi State University) 

9:30 AM – 10:00 AM Fourier transform near infrared spectroscopy discriminates archived otoliths of newly 
detected cryptic species, Etelis carbunculus and Etelis boweni (Kristen Dahl, PIFSC)  

 FT-NIRS IMPLEMENTATION 

10:00 AM – 10:30 AM Trials and tribulations of using FT-NIRS on Pacific Sardine: Method development for 
scanning Pacific Sardine otoliths (Emma Saas, SWFSC – La Jolla Lab) 

10:30 AM – 11:00 AM Benefits and challenges of using FT-NIRS for production age estimation at the 
Northeast Fisheries Science Center (Eric Robillard, NEFSC – Woods Hole Lab) 

Break  

11:30 AM – 12:00 PM FT-NIR spectroscopy of otoliths coupled with deep machine learning to improve age 
prediction (Irina Benson, AFSC – Seattle Lab) 

12:00 PM – 12:30 PM Automatic fish age prediction using deep machine learning: combining otolith image, 
NIR spectra and metadata features (Aotian Zheng – University of Washington) 

12:30 PM – 1:00 PM Calibration and variation of FT-NIRS otolith spectra among NIR spectrometers and 
species (Andy Ostrowski, SEFSC – Beaufort Lab) 

Lunch  

2:00 PM – 2:30 PM A simulation study exploring best practices for model development and 
updating (Morgan Arrington, CICOES-AFSC) 

2:30 PM – 3:00 PM Database architecture and management envisioned for the FT-NIRS paradigm at Alaska 
Fisheries Science Center (Jon Short, AFSC – Seattle Lab) 

3:00 PM – 3:30 PM Group discussion: Likelihood of operational success, timeline for operational readiness 
and communication to stake holders (follow up on Friday, April 7 at 9:00 AM).   
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3:30 PM – 5:30 PM Session 2: AFSC Spectroscopy Lab Tour & demonstration (Bruker Applications Scientist 
– Jason Erikson). AFSC, Building 4 Room 1111 

6:00 PM – 10:00 PM Organized social mixer and casual dinner – Elliot Bay Public House & Brewery 
12537 Lake City Way NE., Seattle WA 98125 

 

Thursday, 6 April  

Presentations cont. FT-NIRS STOCK ASSESSMENT INTEGRATION 

9:00 AM – 10:00 AM 

 

Envisioning the future of production fish ageing: end-to-end integration of the FT-NIRS 
age estimation enterprise (Thomas Helser, AFSC – Seattle Lab) 

10:00 AM – 10:30 AM A simulation framework to examine the effect of ageing error on model-based 
age predictions (Morgan Arrington, CICOES-AFSC) 

Break  

11:00 AM – 11:30 PM Integration of FT-NIRS age data products into the eastern Bering Sea walleye pollock 
and Pacific cod stock assessments (Thomas Helser, AFSC – Seattle Lab) 

Lunch  

1:00 PM –1:30 PM Efficacy of FT-NIRS predicted ages for use in the Gulf of Mexico gray snapper stock 
assessment (Steve Garner, SEFSC – Panama City Lab) 

1:30 PM – 5:00 PM Open discussion with national stock assessment forum 

  

Friday, 7 April  

 FT-NIRS STRATEGIC INITIATIVE BUSINESS 

9:00 AM – 10:30 AM Wrap up - open discussion 

Break  

10:30 AM – 12:00 PM FT-NIR strategic initiative business and budget meeting 

Meeting Adjourn  
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APPENDIX C. Workshop Participants 

 
Name Email Organization Home office location 
Alex Rubin Alexander.Rubin@noaa.gov NOAA, NEFSC, Apex Predators Program Narragansett, RI 
Amanda Rezek amanda.rezek@noaa.gov NOAA, SEFSC, Biology & Life History Beaufort, NC 
Anderson, Alena aqa5@msstate.edu Mississippi State University Starkville, MS 
Andrew Chin andrew.chin@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Andrew Claiborne Andrew.Claiborne@dfw.wa.gov WDFW Olympia, WA  
Andy Ostrowski andy.ostrowski@noaa.gov NOAA, SEFSC, FATES, Life History Beaufort, NC 
Audrey Ty Audrey.Ty@dfo-mpo.gc.ca DFO/PBS Nanaimo, BC, CA 
Austin Anderson Austin.Anderson@dfw.wa.gov WDFW Olympia, WA  
Beth Matta beth.matta@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Beverly Barnett beverly.barnett@noaa.gov NOAA, SEFSC, FATES, Biology & Life History Panama City, FL 
Bill Kline bill.kline@noaa.gov CIMAS, NOAA, SEFSC, Biology & Life History Panama City, FL 
Brenna Groom  brenna.groom@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Brittany Schwartzkopf brittany.schwartzkopf@noaa.gov NOAA, SWFSC, Life History La Jolla, CA 
Carrie Kim Vance ckv7@msstate.edu Mississippi State University Starkville, MS 
Cathy Mattson cathy.mattson@alaska.gov ADF&G-Juneau Juneau, AK 
Charlie Piston charlie.piston@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Chelsea Rothkop Chelsea.Rothkop@dfo-mpo.gc.ca DFO/PBS Nanaimo, BC, CA 
Cheryl Barnes cheryl.barnes@oregonstate.edu ODFW-MRP Newport, OR 
Chris Hinds chris.hinds@alaska.gov ADF&G-Juneau Juneau, AK 
Chris Johnston chris.johnston@iphc.int IPHC Seattle, WA 
Christina Jump Christina.Jump@dfw.wa.gov WDFW Olympia, WA  
Christopher Gburski christopher.gburski@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Claire Stuart claire.stuart@humboldt.edu NOAA, SWFSC, Habitat and Groundfish Ecology Santa Cruz, CA 
Cooke, Chelsea  Chelsea.Cooke@dfo-mpo.gc.ca DFO/PBS Nanaimo, BC, CA 
Craig Kastelle craig.kastelle@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Denise Parker dparker@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Emma Saas emma.saas@noaa.gov Saltwater Inc. and NOAA SWFSC La Jolla, CA 
Emmanis Dorval Emmanis.dorval@noaa.gov NOAA, SWFSC, Life History Program La Jolla, CA 
Eric Robillard eric.robillard@noaa.gov NOAA, NEFSC, Age and Growth Program Woods Hole, MA 
Esther Goldstein Esther.Goldstein@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Han Ju Kim hj0528@korea.kr Fisheries Resources Research Center Tongyoung, KR 
Heather Moncrief-Cox heather.moncrief-cox@noaa.gov CIMAS, NOAA, SEFSC, Biology & Life History Panama City, FL 
Hwan Sung Ji ninise9@nfrdi.go.kr Fisheries Resources Research Center Tongyoung, KR 
Irina Benson irina.benson@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
James Hale jhale@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Jamie Clark jamie.clark@noaa.gov NOAA, SEFSC, FATES, Biology & Life History Beaufort, NC 
Jason Erikson Jason.Erickson@bruker.com Bruker rep Madison, WI 
Jennifer Potts jennifer.potts@noaa.gov NOAA, SEFSC, FATES, Biology & Life History Beaufort, NC 
Jenny Topping Jennifer.Topping@dfw.wa.gov WDFW Olympia, WA  
Jessica Choi jessica.choi@noaa.gov FCP/UCSC, NOAA-SWFSC, Groundfish Santa Cruz, CA 
Jessica Horn jessica.horn@alaska.gov ADF&G-Kodiak Kodiak, AK 
Jim Ianelli jim.ianelli@noaa.gov AFSC/SSMA Seattle, WA 
Joan Forsberg joan.forsberg@iphc.int IPHC Seattle, WA 
John Brogan john.brogan@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
John Wallace john.wallace@noaa.gov NWFSC Seattle, WA 
Jon Short jon.short@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
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Name Email Organization Home office location 
Josh Dore josh.dore@alaska.gov ADF&G-Juneau Juneau, AK 
Julie Pearce julie.pearce@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Kali Stone kali.stone@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Kathrin Bayer kathrin.bayer@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Kathryn Berry  Kathryn.Berry@dfo-mpo.gc.ca DFO/PBS Nanaimo, BC 
Kelsey Magrane kelsey.magrane@iphc.int IPHC Seattle, WA 
Kevin McNeel kevin.mcneel@alaska.gov ADF&G-Juneau Juneau, AK 
Kouba, Andy a.kouba@msstate.edu Mississippi State University Starkville MS 
Kristen Dahl kristen.dahl@noaa.gov NOAA, PIFSC, Life History Program Honolulu, HI 
Leif Rasmuson leif.k.rasmuson@odfw.oregon.gov ODFW-MRP Newport, OR 
Li-Dunn Chen lc1817@msstate.edu Mississippi State University Starkville MS 
Liz Ortiz lortiz@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Marian Ford marian.ford@alaska.gov ADF&G-Homer Homer, AK 
Mark Plumb mark.plumb@alaska.gov ADF&G-Juneau Juneau, AK 
Mark Terwilliger mark.r.terwilliger@odfw.oregon.gov ODFW-MRP Newport, OR 
McAree, Danielle  dmm787@msstate.edu Mississippi State University Starkville, MS 
Melissa Monk melissa.monk@noaa.gov NOAA, SWFSC, Habitat and Groundfish Ecology Santa Cruz, CA 
Meredith Emery Boeck memeryboeck@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Merrie Schultz Merrie.Schultz@dfw.wa.gov WDFW Olympia, WA  
Michelle Passerotti michelle.passerotti@noaa.gov NOAA, NEFSC, Apex Predators Program Narragansett, RI 
Morgan Arrington morgan.arrington@noaa.gov UW CICOES-AFSC, Age and Growth Program Seattle, WA 
Naeem Willett naeem.willett@noaa.gov CIMAS, NOAA, SEFSC, Biology & Life History Panama City, FL 
Nikki Paige npaige@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Oliver Thomas oliverrbthomas@gmail.com The University of Melbourne Melbourne, VIC, AU  
Patrick McDonald pmcdonald@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Poudel, Ashmita ap2751@msstate.edu Mississippi State University Starkville MS 
Robert Tobin robert.tobin@iphc.int IPHC Seattle, WA 
Sandi Neidetcher sandi.neidetcher@noaa.gov NOAA,AFSC, Age and Growth Program Seattle, WA 
Seung Hwan Lee hwan2915@korea.kr West sea Fisheries Resources Research Division Incheon, KR 
Sonya Elmejjati sonya.elmejjati@alaska.gov ADFG Kodiak, AK 
Steve Barbeaux steve.barbeaux@noaa.gov AFSC/SSMA Seattle, WA 
Steve Garner steven.garner@noaa.gov CIMAS, NOAA, FATES, Life History Panama City, FL 
Tera Winters tera.winters@noaa.gov CIMAS, NOAA, SEFSC, Biology & Life History Panama City, FL 
Thomas Helser thomas.helser@noaa.gov NOAA, AFSC, AGP Seattle, WA 
Tien-Shui Tsou Tien-Shui.Tsou@dfw.wa.gov WDFW Olympia, WA 
Todd TenBrink todd.tenbrink@noaa.gov NOAA, AFSC, Age and Growth Program Seattle, WA 
Tracey Loewen Tracey.Loewen@dfo-mpo.gc.ca DFO/Freshwater Institute Winnipeg, MB, CA 
Tracy McCulloch Tracy.McCulloch@noaa.gov NOAA, SEFSC, FATES, Biology & Life History Beaufort, NC 
Tyler Johnson tjohnson@psmfc.org NWFSC/PSMFC; Cooperative Ageing Lab Newport, OR 
Walt Rogers Walt.rogers@noaa.gov NOAA, SEFSC, FATES, Biology & Life History Beaufort, NC 
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